Thomas Male
commited on
Update handler.py
Browse files- handler.py +38 -15
handler.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
from typing import Dict, List, Any
|
|
|
|
| 2 |
import torch
|
| 3 |
from torch import autocast
|
| 4 |
from tqdm.auto import tqdm
|
|
@@ -24,13 +25,18 @@ class EndpointHandler():
|
|
| 24 |
# load the optimized model
|
| 25 |
print('creating base model...')
|
| 26 |
|
|
|
|
| 27 |
self.base_name = 'base40M-textvec'
|
| 28 |
-
#self.base_name = 'base40M'
|
| 29 |
-
|
| 30 |
self.base_model = model_from_config(MODEL_CONFIGS[self.base_name], device)
|
| 31 |
self.base_model.eval()
|
| 32 |
self.base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[self.base_name])
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
print('creating upsample model...')
|
| 35 |
self.upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device)
|
| 36 |
self.upsampler_model.eval()
|
|
@@ -38,6 +44,7 @@ class EndpointHandler():
|
|
| 38 |
|
| 39 |
print('downloading base checkpoint...')
|
| 40 |
self.base_model.load_state_dict(load_checkpoint(self.base_name, device))
|
|
|
|
| 41 |
|
| 42 |
print('downloading upsampler checkpoint...')
|
| 43 |
self.upsampler_model.load_state_dict(load_checkpoint('upsample', device))
|
|
@@ -58,27 +65,43 @@ class EndpointHandler():
|
|
| 58 |
print('image data found')
|
| 59 |
else:
|
| 60 |
print('no image data found')
|
|
|
|
| 61 |
|
| 62 |
inputs = data.pop("inputs", data)
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
# run inference pipeline
|
| 78 |
with autocast(device.type):
|
| 79 |
samples = None
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
#image = self.pipe(inputs, guidance_scale=7.5)["sample"][0]
|
| 83 |
|
| 84 |
pc = sampler.output_to_point_clouds(samples)[0]
|
|
|
|
| 1 |
from typing import Dict, List, Any
|
| 2 |
+
from PIL import Image
|
| 3 |
import torch
|
| 4 |
from torch import autocast
|
| 5 |
from tqdm.auto import tqdm
|
|
|
|
| 25 |
# load the optimized model
|
| 26 |
print('creating base model...')
|
| 27 |
|
| 28 |
+
print('creating base model...')
|
| 29 |
self.base_name = 'base40M-textvec'
|
|
|
|
|
|
|
| 30 |
self.base_model = model_from_config(MODEL_CONFIGS[self.base_name], device)
|
| 31 |
self.base_model.eval()
|
| 32 |
self.base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[self.base_name])
|
| 33 |
|
| 34 |
+
print('creating image model...')
|
| 35 |
+
self.base_image_name = 'base40M'
|
| 36 |
+
self.base_image_model = model_from_config(MODEL_CONFIGS[self.base_image_name], device)
|
| 37 |
+
self.base_image_model.eval()
|
| 38 |
+
self.base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[self.base_image_name])
|
| 39 |
+
|
| 40 |
print('creating upsample model...')
|
| 41 |
self.upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device)
|
| 42 |
self.upsampler_model.eval()
|
|
|
|
| 44 |
|
| 45 |
print('downloading base checkpoint...')
|
| 46 |
self.base_model.load_state_dict(load_checkpoint(self.base_name, device))
|
| 47 |
+
self.base_image_model.load_state_dict(load_checkpoint(self.base_image_name, device))
|
| 48 |
|
| 49 |
print('downloading upsampler checkpoint...')
|
| 50 |
self.upsampler_model.load_state_dict(load_checkpoint('upsample', device))
|
|
|
|
| 65 |
print('image data found')
|
| 66 |
else:
|
| 67 |
print('no image data found')
|
| 68 |
+
|
| 69 |
|
| 70 |
inputs = data.pop("inputs", data)
|
| 71 |
|
| 72 |
+
if use_image:
|
| 73 |
+
sampler = PointCloudSampler(
|
| 74 |
+
device=device,
|
| 75 |
+
models=[base_model, upsampler_model],
|
| 76 |
+
diffusions=[base_diffusion, upsampler_diffusion],
|
| 77 |
+
num_points=[1024, 4096 - 1024],
|
| 78 |
+
aux_channels=['R', 'G', 'B'],
|
| 79 |
+
guidance_scale=[3.0, 3.0],
|
| 80 |
+
)
|
| 81 |
|
| 82 |
+
# Load an image to condition on.
|
| 83 |
+
img = Image.open('example_data/cube_stack.jpg')
|
| 84 |
+
else:
|
| 85 |
+
sampler = PointCloudSampler(
|
| 86 |
+
device=device,
|
| 87 |
+
models=[self.base_model,self.upsampler_model],
|
| 88 |
+
diffusions=[self.base_diffusion, self.upsampler_diffusion],
|
| 89 |
+
num_points=[1024, 4096 - 1024],
|
| 90 |
+
aux_channels=['R', 'G', 'B'],
|
| 91 |
+
guidance_scale=[3.0, 0.0],
|
| 92 |
+
model_kwargs_key_filter=('texts', ''), # Do not condition the upsampler at all
|
| 93 |
+
)
|
| 94 |
|
| 95 |
# run inference pipeline
|
| 96 |
with autocast(device.type):
|
| 97 |
samples = None
|
| 98 |
+
if use_image:
|
| 99 |
+
for x in tqdm(sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(images=[img]))):
|
| 100 |
+
samples = x
|
| 101 |
+
else:
|
| 102 |
+
for x in tqdm(sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(texts=[inputs]))):
|
| 103 |
+
samples = x
|
| 104 |
+
|
| 105 |
#image = self.pipe(inputs, guidance_scale=7.5)["sample"][0]
|
| 106 |
|
| 107 |
pc = sampler.output_to_point_clouds(samples)[0]
|