File size: 17,485 Bytes
3527383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the CC-by-NC license found in the
# LICENSE file in the root directory of this source tree.

from contextlib import nullcontext
from math import ceil
from typing import Callable, Optional, Union

import torch
from torch import Tensor
import gc
from torch.nn import functional as F

from flow_matching.path import MixtureDiscreteProbPath

from flow_matching.solver.solver import Solver
from flow_matching.utils import categorical, ModelWrapper
from .utils import get_nearest_times
from ..utils.multi_guidance import *

try:
    from tqdm import tqdm

    TQDM_AVAILABLE = True
except ImportError:
    TQDM_AVAILABLE = False


class MixtureDiscreteEulerSolver(Solver):
    r"""Solver that simulates the CTMC process :math:`(X_t)_{t_{\text{init}}\leq t\leq t_{\text{final}}}` defined by :math:`p_t` the marginal probability path of ``path``.
    Given :math:`X_t \sim p_t`, the algorithm of solver step from :math:`t` to :math:`t+h` for the i-th coordinate is:

    .. math::

        \begin{align*}
            & X_1^i \sim p_{1|t}^i(\cdot|X_t)\\
            & \lambda^i \gets \sum_{x^i\ne X_t^i} u_t^i(x^i, X_t^i|X_1^i)\\
            & Z^i_{\text{change}} \sim U[0,1]\\
            & X_{t+h}^i \sim \begin{cases}
                \frac{u_t^i(\cdot, X_t^i|X_1^i)}{\lambda^i}(1-\delta_{X_t^i}(\cdot)) \text{ if $Z^i_{\text{change}}\le 1-e^{-h\lambda^i}$}\\
                \delta_{X_t^i}(\cdot) \text{ else }
            \end{cases}
        \end{align*}

    Where :math:`p_{1|t}(\cdot|X_t)` is the output of ``model``, and the conditional probability velocity is of the mixture probability path is:

    .. math::

        u_t^i(x^i, y^i|x_1^i) = \hat{u}_t^i(x^i, y^i|x_1^i) + c_{\text{div\_free}}\left[\hat{u}_t^i(x^i, y^i|x_1^i) - \check{u}_t^i(x^i, y^i|x_1^i) \right],

    where

    .. math::
        \hat{u}_t^i(x^i, y^i|x_1^i) = \frac{\dot{\kappa}_t}{1-\kappa_t} \left[ \delta_{x_1^i}(x^i) - \delta_{y^i}(x^i) \right],

    and

    .. math::

        \check{u}_t^i(x^i, y^i|x_1^i) = \frac{\dot{\kappa}_t}{\kappa_t}\left[ \delta_{y^i}(x^i) - p(x^i) \right].

    The source distribution :math:`p(x^i)` is given by ``p``.

    Args:
        model (ModelWrapper): trained with x-prediction, outputting posterior probabilities (in the range :math:`[0,1]`), output must be [..., vocabulary_size].
        path (MixtureDiscreteProbPath): Probability path used for x-prediction training.
        vocabulary_size (int): size of the discrete vocabulary.
        source_distribution_p (Optional[Tensor], optional): Source distribution, must be of shape [vocabulary_size]. Required only when divergence-free term for the probability velocity is non-zero. Defaults to None.
    """

    def __init__(
        self,
        model: ModelWrapper,
        path: MixtureDiscreteProbPath,
        vocabulary_size: int,
        source_distribution_p: Optional[Tensor] = None,
    ):
        super().__init__()
        self.model = model
        self.path = path
        self.vocabulary_size = vocabulary_size

        if source_distribution_p is not None:
            assert source_distribution_p.shape == torch.Size(
                [vocabulary_size]
            ), f"Source distribution p dimension must match the vocabulary size {vocabulary_size}. Got {source_distribution_p.shape}."

        self.source_distribution_p = source_distribution_p

    @torch.no_grad()
    def sample(
        self,
        x_init: Tensor,
        step_size: Optional[float],
        div_free: Union[float, Callable[[float], float]] = 0.0,
        dtype_categorical: torch.dtype = torch.float32,
        time_grid: Tensor = torch.tensor([0.0, 1.0]),
        return_intermediates: bool = False,
        verbose: bool = False,
        **model_extras,
    ) -> Tensor:
        """
        Sample a sequence of discrete values from the given model.

        .. code-block:: python

            import torch
            from flow_matching.utils import ModelWrapper
            from flow_matching.solver import MixtureDiscreteEulerSolver

            class DummyModel(ModelWrapper):
                def __init__(self):
                    super().__init__(None)
                def forward(self, x: torch.Tensor, t: torch.Tensor, **extras) -> torch.Tensor:
                    return ...

            model = DummyModel()
            solver = MixtureDiscreteEulerSolver(model=model)

            x_init = torch.LongTensor([122, 725])
            step_size = 0.001
            time_grid = torch.tensor([0.0, 1.0])

            result = solver.sample(x_init=x_init, step_size=step_size, time_grid=time_grid)

        Args:
            x_init (Tensor): The initial state.
            step_size (Optional[float]): If float then time discretization is uniform with the given step size. If None then time discretization is set to be time_grid.
            div_free (Union[float, Callable[[float], float]]): The coefficient of the divergence-free term in the probability velocity. Can be either a float or a time dependent function. Defaults to 0.0.
            dtype_categorical (torch.dtype): Precision to use for categorical sampler. Defaults to torch.float32.
            time_grid (Tensor): The CTMC process is solved in the interval [time_grid[0], time_grid[-1]] and if step_size is None then time discretization is set by the time grid. Defaults to torch.tensor([0.0,1.0]).
            return_intermediates (bool): If True then return intermediate time steps according to time_grid. Defaults to False.
            verbose (bool): Whether to print progress bars. Defaults to False.
            **model_extras: Additional input for the model.

        Returns:
            Tensor: The sampled sequence of discrete values.

        Raises:
            ImportError: To run in verbose mode, tqdm must be installed.
        """
        if not div_free == 0.0:
            assert (
                self.source_distribution_p is not None
            ), "Source distribution p must be specified in order to add a divergence-free term to the probability velocity."

        # Initialize the current state `x_t` with the initial state `X_0`.
        time_grid = time_grid.to(device=x_init.device)

        if step_size is None:
            # If step_size is None then set the t discretization to time_grid.
            t_discretization = time_grid
            n_steps = len(time_grid) - 1
        else:
            # If step_size is float then t discretization is uniform with step size set by step_size.
            t_init = time_grid[0].item()
            t_final = time_grid[-1].item()
            assert (
                t_final - t_init
            ) > step_size, f"Time interval [time_grid[0], time_grid[-1]] must be larger than step_size. Got a time interval [{t_init}, {t_final}] and step_size {step_size}."

            n_steps = ceil((t_final - t_init) / step_size)
            t_discretization = torch.tensor(
                [t_init + step_size * i for i in range(n_steps)] + [t_final],
                device=x_init.device,
            )

            if return_intermediates:
                # get order of intermediate steps:
                order = torch.argsort(time_grid)
                # Compute intermediate steps to return via nearest points in t_discretization to time_grid.
                time_grid = get_nearest_times(
                    time_grid=time_grid, t_discretization=t_discretization
                )

        x_t = x_init.clone()
        steps_counter = 0
        res = []

        if return_intermediates:
            res = [x_init.clone()]

        if verbose:
            if not TQDM_AVAILABLE:
                raise ImportError(
                    "tqdm is required for verbose mode. Please install it."
                )
            ctx = tqdm(total=t_final, desc=f"NFE: {steps_counter}")
        else:
            ctx = nullcontext()

        with ctx:
            for i in range(n_steps):
                t = t_discretization[i : i + 1]
                h = t_discretization[i + 1 : i + 2] - t_discretization[i : i + 1]

                # Sample x_1 ~ p_1|t( \cdot |x_t)
                p_1t = self.model(x=x_t, t=t.repeat(x_t.shape[0]), **model_extras)
                x_1 = categorical(p_1t.to(dtype=dtype_categorical))

                # Checks if final step
                if i == n_steps - 1:
                    x_t = x_1
                else:
                    # Compute u_t(x|x_t,x_1)
                    scheduler_output = self.path.scheduler(t=t)

                    k_t = scheduler_output.alpha_t
                    d_k_t = scheduler_output.d_alpha_t

                    delta_1 = F.one_hot(x_1, num_classes=self.vocabulary_size).to(
                        k_t.dtype
                    ) # [B, L, V]
                    u = d_k_t / (1 - k_t) * delta_1

                    # Add divergence-free part
                    div_free_t = div_free(t) if callable(div_free) else div_free

                    if div_free_t > 0:
                        p_0 = self.source_distribution_p[(None,) * x_t.dim()]
                        u = u + div_free_t * d_k_t / (k_t * (1 - k_t)) * (
                            (1 - k_t) * p_0 + k_t * delta_1
                        )

                    # Set u_t(x_t|x_t,x_1) = 0
                    delta_t = F.one_hot(x_t, num_classes=self.vocabulary_size) # [B, L, V]
                    u = torch.where(
                        delta_t.to(dtype=torch.bool), torch.zeros_like(u), u
                    )
                    # import pdb
                    # if i % 10 == 0:
                    #     pdb.set_trace()
                    # Sample x_t ~ u_t( \cdot |x_t,x_1)
                    intensity = u.sum(dim=-1)  # Assuming u_t(xt|xt,x1) := 0
                    mask_jump = torch.rand(size=x_t.shape, device=x_t.device) < 1 - torch.exp(-h * intensity)

                    if mask_jump.sum() > 0:
                        x_t[mask_jump] = categorical(
                            u[mask_jump].to(dtype=dtype_categorical)
                        )

                steps_counter += 1
                t = t + h

                if return_intermediates and (t in time_grid):
                    res.append(x_t.clone())

                if verbose:
                    ctx.n = t.item()
                    ctx.refresh()
                    ctx.set_description(f"NFE: {steps_counter}")

        if return_intermediates:
            if step_size is None:
                return torch.stack(res, dim=0)
            else:
                return torch.stack(res, dim=0)[order]
        else:
            return x_t


    @torch.no_grad()
    def multi_guidance_sample(
        self,
        args,
        x_init: Tensor,
        step_size: Optional[float],
        div_free: Union[float, Callable[[float], float]] = 0.0,
        dtype_categorical: torch.dtype = torch.float32,
        time_grid: Tensor = torch.tensor([0.0, 1.0]),
        return_intermediates: bool = False,
        verbose: bool = False,
        score_models: list = None,
        num_objectives: int = 1,
        weights: list = None,
        **model_extras,
    ) -> Tensor:

        # score_list_0 = []
        # score_list_1 = []
        # score_list_2 = []
        # score_list_3 = []
        # score_list_4 = []
        # score_list_5 = []

        import pdb

        if not div_free == 0.0:
            raise NotImplementedError

        # Initialize the current state `x_t` with the initial state `X_0`.
        time_grid = time_grid.to(device=x_init.device)

        if step_size is None:
            # If step_size is None then set the t discretization to time_grid.
            t_discretization = time_grid
            n_steps = len(time_grid) - 1
        else:
            # If step_size is float then t discretization is uniform with step size set by step_size.
            t_init = time_grid[0].item()
            t_final = time_grid[-1].item()
            assert (
                t_final - t_init
            ) > step_size, f"Time interval [time_grid[0], time_grid[-1]] must be larger than step_size. Got a time interval [{t_init}, {t_final}] and step_size {step_size}."

            n_steps = ceil((t_final - t_init) / step_size)
            t_discretization = torch.tensor(
                [t_init + step_size * i for i in range(n_steps)] + [t_final],
                device=x_init.device,
            )

            if return_intermediates:
                # get order of intermediate steps:
                order = torch.argsort(time_grid)
                # Compute intermediate steps to return via nearest points in t_discretization to time_grid.
                time_grid = get_nearest_times(
                    time_grid=time_grid, t_discretization=t_discretization
                )

        x_t = x_init.clone()
        steps_counter = 0
        res = []

        if return_intermediates:
            res = [x_init.clone()]

        if verbose:
            if not TQDM_AVAILABLE:
                raise ImportError(
                    "tqdm is required for verbose mode. Please install it."
                )
            ctx = tqdm(total=t_final, desc=f"NFE: {steps_counter}")
        else:
            ctx = nullcontext()

        # Randomly sample a weight vector
        if weights is not None:
            w = torch.tensor(weights).to(device=x_init.device)
        else:
            w, _ = select_random_weight_vector(num_objectives, args.num_div)
            # w = torch.tensor([0.2, 0.7, 0.05, 0.05]).to(x_t.device)
            w = w.to(device=x_init.device)
        print(f"Weight Vector: {w}")
        Phi = args.Phi_init
        ema_r_t = None

        with ctx:
            for i in range(n_steps):
                t = t_discretization[i : i + 1]
                h = t_discretization[i + 1 : i + 2] - t_discretization[i : i + 1]

                p_1t = self.model(x=x_t, t=t.repeat(x_t.shape[0]), **model_extras)
                x_1 = categorical(p_1t.to(dtype=dtype_categorical))

                # Checks if final step
                if i != n_steps - 1:
                    # Compute u_t(y,x)
                    scheduler_output = self.path.scheduler(t=t)
                    k_t = scheduler_output.alpha_t
                    d_k_t = scheduler_output.d_alpha_t
                    u_t = d_k_t / (1 - k_t) * p_1t

                    guided_u_t, pos_indices, cand_tokens, improvement_values, delta_S = guided_transition_scoring(x_t, u_t, w, score_models, t, w, args)

                    best_candidate, accepted_mask, valid_mask, Phi, ema_r_t = adaptive_hypercone_filtering(improvement_values, cand_tokens, delta_S, w, Phi, args, ema_r_t=ema_r_t)
                    
                    # best_candidate, accepted_mask, valid_mask, Phi, ema_r_t = hypercone_filtering(improvement_values, cand_tokens, delta_S, w, Phi, args, ema_r_t=ema_r_t)

                    # best_candidate = get_best_candidate(improvement_values, cand_tokens, delta_S)

                    x_t = euler_sample(x_t, pos_indices, best_candidate, guided_u_t, h)


                steps_counter += 1
                t = t + h

                scores = []
                for i, s in enumerate(score_models):
                    sig = inspect.signature(s.forward) if hasattr(s, 'forward') else inspect.signature(s)
                    if 't' in sig.parameters:
                        candidate_scores = s(x_t, 1)
                    else:
                        candidate_scores = s(x_t)

                    if isinstance(candidate_scores, tuple):
                        for score in candidate_scores:
                            scores.append(score.item())
                    else:
                        scores.append(candidate_scores.item())
                print(scores)

                    # print(f"Score {i}: {[round(s.item(), 4) for s in candidate_scores]}")
                    # if i == 0:
                    #     score_list_0.append(round(candidate_scores[0].item(), 2))
                    #     # score_list_0.append(round(1-candidate_scores.item(), 2))
                    #     # score_list_1.append(round(candidate_scores[1].item(), 2))
                    # if i == 1:
                    #     score_list_1.append(round(candidate_scores.item(), 2))
                    #     # score_list_2.append(round(candidate_scores.item(), 2))
                    # if i == 2:
                    #     score_list_2.append(round(candidate_scores.item(), 2))
                    # if i == 3:
                    #     score_list_3.append(round(candidate_scores.item(), 2))
                    # if i == 4:
                    #     score_list_4.append(round(candidate_scores.item(), 2))
                    # if i == 5:
                    #     score_list_5.append(round(candidate_scores.item(), 2))


                if return_intermediates and (t in time_grid):
                    res.append(x_t.clone())

                if verbose:
                    ctx.n = t.item()
                    ctx.refresh()
                    ctx.set_description(f"NFE: {steps_counter}")

        # print(score_list)
        if return_intermediates:
            if step_size is None:
                return torch.stack(res, dim=0)
            else:
                return torch.stack(res, dim=0)[order]
        else:
            # return x_t, score_list_0, score_list_1, score_list_2, score_list_3, score_list_4, score_list_5
            return x_t