File size: 20,651 Bytes
b24eac9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
import copy
import math
import pickle
import scipy
import torch.nn.functional as F
import numpy as np
import torch
import torch.nn as nn
from scipy.linalg import sqrtm
import re
def upgrade_state_dict(state_dict, prefixes=["encoder.sentence_encoder.", "encoder."]):
"""Removes prefixes 'model.encoder.sentence_encoder.' and 'model.encoder.'."""
pattern = re.compile("^" + "|".join(prefixes))
state_dict = {pattern.sub("", name): param for name, param in state_dict.items()}
return state_dict
def map_t_to_alpha(t, alpha_scale):
"""
Maps t in [0,1) to the range of alphas using the inverse CDF of an exponential distribution.
Args:
t (torch.Tensor): A tensor of values in [0,1).
alpha_scale (float): The scaling factor used in the original alpha calculation.
Returns:
torch.Tensor: The corresponding alpha values.
"""
if torch.any(t >= 1) or torch.any(t < 0):
raise ValueError("t must be in the range [0,1).")
return 1 + (-torch.log(1 - t)) * alpha_scale
# return torch.clamp(1 + (-torch.log(1 - t)) * alpha_scale, torch.tensor(8).to(t.device))
def load_flybrain_designed_seqs(path):
order = {'A': 0, 'C':1, 'G':2, 'T':3}
f = open(path, "rb")
data = pickle.load(f)
arrays = []
for seq in data['seq']:
arrays.append([order[char] for char in seq])
return torch.tensor(arrays, dtype=torch.long)
def update_ema(current_dict, prev_ema, gamma = 0.9):
ema = copy.deepcopy(prev_ema)
current_dict = copy.deepcopy(current_dict)
for key, current_value in current_dict.items():
ema_key = 'ema_' + key
if not np.isnan(current_value):
if ema_key in prev_ema:
ema[ema_key] = (1 - gamma) * current_value + gamma * prev_ema[ema_key]
else:
ema[ema_key] = current_value
return ema
def min_max_str(x):
return f'min {x.min()} max {x.max()}'
def get_wasserstein_dist(embeds1, embeds2):
if np.isnan(embeds2).any() or np.isnan(embeds1).any() or len(embeds1) == 0 or len(embeds2) == 0:
return float('nan')
mu1, sigma1 = embeds1.mean(axis=0), np.cov(embeds1, rowvar=False)
mu2, sigma2 = embeds2.mean(axis=0), np.cov(embeds2, rowvar=False)
ssdiff = np.sum((mu1 - mu2) ** 2.0)
covmean = sqrtm(sigma1.dot(sigma2))
if np.iscomplexobj(covmean):
covmean = covmean.real
dist = ssdiff + np.trace(sigma1 + sigma2 - 2.0 * covmean)
return dist
def simplex_proj(seq):
"""Algorithm from https://arxiv.org/abs/1309.1541 Weiran Wang, Miguel Á. Carreira-Perpiñán"""
Y = seq.reshape(-1, seq.shape[-1])
N, K = Y.shape
X, _ = torch.sort(Y, dim=-1, descending=True)
X_cumsum = torch.cumsum(X, dim=-1) - 1
div_seq = torch.arange(1, K + 1, dtype=Y.dtype, device=Y.device)
Xtmp = X_cumsum / div_seq.unsqueeze(0)
greater_than_Xtmp = (X > Xtmp).sum(dim=1, keepdim=True)
row_indices = torch.arange(N, dtype=torch.long, device=Y.device).unsqueeze(1)
selected_Xtmp = Xtmp[row_indices, greater_than_Xtmp - 1]
X = torch.max(Y - selected_Xtmp, torch.zeros_like(Y))
return X.view(seq.shape)
def batch_project_simplex(v):
u, _ = torch.sort(v, dim=1, descending=True)
cssv = u.cumsum(dim=1)
k = torch.arange(1, v.shape[1] + 1, device=v.device)
rho = ((u * k) > (cssv - 1)).int().cumsum(dim=1).argmax(dim=1)
theta = (cssv[torch.arange(v.shape[0]), rho] - 1) / (rho + 1).float()
w = torch.maximum(v - theta.unsqueeze(1), torch.tensor(0.0, device=v.device))
return w
if __name__ == "__main__":
a = torch.softmax(torch.rand((5,4)), dim=-1)
b = torch.rand((5,4)) - 1
ab = torch.cat([a,b])
ab_proj1 = batch_project_simplex(ab)
ab_proj2 = simplex_proj(ab)
print('ab_proj1 - ab_proj2',ab_proj1 - ab_proj2)
print('ab_proj1 - ab', ab_proj1 - ab)
print('ab_proj2.sum(-1)', ab_proj2.sum(-1))
print('ab_proj2', ab_proj2)
def sample_cond_prob_path(args, seq, alphabet_size):
B, L = seq.shape
seq_one_hot = torch.nn.functional.one_hot(seq, num_classes=alphabet_size)
if args.mode == 'dirichlet':
alphas = torch.from_numpy(1 + scipy.stats.expon().rvs(size=B) * args.alpha_scale).to(seq.device).float()
if args.fix_alpha:
alphas = torch.ones(B, device=seq.device) * args.fix_alpha
alphas_ = torch.ones(B, L, alphabet_size, device=seq.device)
alphas_ = alphas_ + seq_one_hot * (alphas[:,None,None] - 1)
xt = torch.distributions.Dirichlet(alphas_).sample()
elif args.mode == 'distill':
alphas = torch.zeros(B, device=seq.device)
xt = torch.distributions.Dirichlet(torch.ones(B, L, alphabet_size, device=seq.device)).sample()
elif args.mode == 'riemannian':
t = torch.rand(B, device=seq.device)
dirichlet = torch.distributions.Dirichlet(torch.ones(alphabet_size, device=seq.device))
x0 = dirichlet.sample((B,L))
x1 = seq_one_hot
xt = t[:,None,None] * x1 + (1 - t[:,None,None]) * x0
alphas = t
elif args.mode == 'ardm' or args.mode == 'lrar':
mask_prob = torch.rand(1, device=seq.device)
mask = torch.rand(seq.shape, device=seq.device) < mask_prob
if args.mode == 'lrar': mask = ~(torch.arange(L, device=seq.device) < (1-mask_prob) * L)
xt = torch.where(mask, alphabet_size, seq) # mask token index
xt = torch.nn.functional.one_hot(xt, num_classes=alphabet_size + 1).float() # plus one to include index for mask token
alphas = mask_prob.expand(B)
return xt, alphas
def expand_simplex(xt, alphas, prior_pseudocount):
prior_weights = (prior_pseudocount / (alphas + prior_pseudocount - 1))[:, None, None]
return torch.cat([xt * (1 - prior_weights), xt * prior_weights], -1), prior_weights
class DirichletConditionalFlow:
def __init__(self, K=20, alpha_min=1, alpha_max=100, alpha_spacing=0.01):
self.alphas = np.arange(alpha_min, alpha_max + alpha_spacing, alpha_spacing)
self.beta_cdfs = []
self.bs = np.linspace(0, 1, 1000)
for alph in self.alphas:
self.beta_cdfs.append(scipy.special.betainc(alph, K-1, self.bs))
self.beta_cdfs = np.array(self.beta_cdfs)
self.beta_cdfs_derivative = np.diff(self.beta_cdfs, axis=0) / alpha_spacing
self.K = K
def c_factor(self, bs, alpha):
out1 = scipy.special.beta(alpha, self.K - 1)
out2 = np.where(bs < 1, out1 / ((1 - bs) ** (self.K - 1)), 0)
out = np.where((bs ** (alpha - 1)) > 0, out2 / (bs ** (alpha - 1)), 0)
I_func = self.beta_cdfs_derivative[np.argmin(np.abs(alpha - self.alphas))]
interp = -np.interp(bs, self.bs, I_func)
final = interp * out
return final
class GaussianSmearing(torch.nn.Module):
# used to embed the edge distances
def __init__(self, start=0.0, stop=5.0, embedding_dim=50):
super().__init__()
offset = torch.linspace(start, stop, embedding_dim)
self.coeff = -0.5 / (offset[1] - offset[0]).item() ** 2
self.register_buffer("offset", offset)
self.embedding_dim = embedding_dim
def forward(self, signal):
shape = signal.shape
signal = signal.view(-1, 1) - self.offset.view(1, -1) + 1E-6
encoded = torch.exp(self.coeff * torch.pow(signal, 2))
return encoded.view(*shape, self.embedding_dim)
class MonotonicFunction(torch.nn.Module):
def __init__(self, init_max, num_bins):
super().__init__()
self.w = torch.nn.Parameter(torch.ones(num_bins) * np.log(init_max) - np.log(num_bins))
self.num_bins = num_bins
def forward(self, t):
widths = torch.exp(self.w)
right = torch.cumsum(widths, 0)
left = right - widths
bin_idx = (t * self.num_bins).long()
frac_part = t - bin_idx * (1 / self.num_bins)
return left[bin_idx] + (frac_part * self.num_bins) * (right[bin_idx] - left[bin_idx])
def invert(self, f):
widths = torch.exp(self.w)
left = torch.cumsum(widths, 0) - widths
bin_idx = (f.unsqueeze(-1) > left).sum(-1) - 1
frac_part = f - left[bin_idx]
return bin_idx / self.num_bins + frac_part / widths[bin_idx] / self.num_bins
def derivative(self, t):
widths = torch.exp(self.w)
right = torch.cumsum(widths, 0)
left = right - widths
bin_idx = (t * self.num_bins).long()
return (right[bin_idx] - left[bin_idx]) * self.num_bins
class SinusoidalEmbedding(nn.Module):
""" from https://github.com/hojonathanho/diffusion/blob/master/diffusion_tf/nn.py """
def __init__(self, embedding_dim, embedding_scale, max_positions=10000):
super().__init__()
self.embedding_dim = embedding_dim
self.max_positions = max_positions
self.embedding_scale = embedding_scale
def forward(self, signal):
shape = signal.shape
signal = signal.view(-1) * self.embedding_scale
half_dim = self.embedding_dim // 2
emb = math.log(self.max_positions) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32, device=signal.device) * -emb)
emb = signal.float()[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if self.embedding_dim % 2 == 1: # zero pad
emb = F.pad(emb, (0, 1), mode='constant')
assert emb.shape == (signal.shape[0], self.embedding_dim)
return emb.view(*shape, self.embedding_dim )
class GaussianFourierProjection(nn.Module):
"""Gaussian Fourier embeddings for noise levels.
from https://github.com/yang-song/score_sde_pytorch/blob/1618ddea340f3e4a2ed7852a0694a809775cf8d0/models/layerspp.py#L32
"""
def __init__(self, embedding_dim=256, scale=1.0):
super().__init__()
self.W = nn.Parameter(torch.randn(embedding_dim//2) * scale, requires_grad=False)
self.embedding_dim = embedding_dim
def forward(self, signal):
shape = signal.shape
signal = signal.view(-1)
signal_proj = signal[:, None] * self.W[None, :] * 2 * np.pi
emb = torch.cat([torch.sin(signal_proj), torch.cos(signal_proj)], dim=-1)
return emb.view(*shape, self.embedding_dim )
def get_signal_mapping(embedding_type, embedding_dim, embedding_scale=10000):
if embedding_type == 'sinusoidal':
emb_func = SinusoidalEmbedding(embedding_dim=embedding_dim, embedding_scale=embedding_scale)
elif embedding_type == 'fourier':
emb_func = GaussianFourierProjection(embedding_dim=embedding_dim, scale=embedding_scale)
elif embedding_type == 'gaussian':
emb_func = GaussianSmearing(0.0, 1, embedding_dim)
else:
raise NotImplemented
return emb_func
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
"""
Create a beta schedule that discretizes the given alpha_t_bar function,
which defines the cumulative product of (1-beta) over time from t = [0,1].
:param num_diffusion_timesteps: the number of betas to produce.
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
produces the cumulative product of (1-beta) up to that
part of the diffusion process.
:param max_beta: the maximum beta to use; use values lower than 1 to
prevent singularities.
"""
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
return np.array(betas)
def get_beta_schedule(num_steps):
return betas_for_alpha_bar(
num_steps,
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
)
class GaussianDiffusionSchedule:
"""
Utilities for training and sampling diffusion models.
Ported directly from here, and then adapted over time to further experimentation.
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42
:param betas: a 1-D numpy array of betas for each diffusion timestep,
starting at T and going to 1.
:param model_mean_type: a ModelMeanType determining what the model outputs.
:param model_var_type: a ModelVarType determining how variance is output.
:param loss_type: a LossType determining the loss function to use.
:param rescale_timesteps: if True, pass floating point timesteps into the
model so that they are always scaled like in the
original paper (0 to 1000).
"""
def __init__(
self,
timesteps,
noise_scale=1.0,
):
betas = get_beta_schedule(timesteps)
# Use float64 for accuracy.
betas = np.array(betas, dtype=np.float64)
self.betas = betas
assert len(betas.shape) == 1, "betas must be 1-D"
assert (betas > 0).all() and (betas <= 1).all()
self.timesteps = int(betas.shape[0])
self.noise_scale = noise_scale
alphas = 1.0 - betas
self.alphas_cumprod = np.cumprod(alphas, axis=0)
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1])
self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0)
assert self.alphas_cumprod_prev.shape == (self.timesteps,)
# calculations for diffusion q(x_t | x_{t-1}) and others
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod)
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1)
# calculations for posterior q(x_{t-1} | x_t, x_0)
self.posterior_variance = (
betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
)
# log calculation clipped because the posterior variance is 0 at the
# beginning of the diffusion chain.
self.posterior_log_variance_clipped = np.log(
np.append(self.posterior_variance[1], self.posterior_variance[1:])
)
self.posterior_mean_coef1 = (
betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
)
self.posterior_mean_coef2 = (
(1.0 - self.alphas_cumprod_prev)
* np.sqrt(alphas)
/ (1.0 - self.alphas_cumprod)
)
def q_sample(self, x_start, t, noise=None):
"""
Diffuse the data for a given number of diffusion steps.
In other words, sample from q(x_t | x_0).
:param x_start: the initial data batch.
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
:param noise: if specified, the split-out normal noise.
:return: A noisy version of x_start.
"""
if noise is None:
noise = self.noise_scale * torch.randn_like(x_start)
# add scaling here
assert noise.shape == x_start.shape
return (
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
+ _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
* noise
)
def q_posterior_mean_variance(self, x_start, x_t, t):
"""
Compute the mean and variance of the diffusion posterior:
q(x_{t-1} | x_t, x_0)
"""
assert x_start.shape == x_t.shape
posterior_mean = (
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
+ _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = _extract_into_tensor(
self.posterior_log_variance_clipped, t, x_t.shape
)
posterior_variance = (self.noise_scale ** 2) * posterior_variance
posterior_log_variance_clipped = 2 * np.log(self.noise_scale) + posterior_log_variance_clipped
assert (
posterior_mean.shape[0]
== posterior_variance.shape[0]
== posterior_log_variance_clipped.shape[0]
== x_start.shape[0]
)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def _extract_into_tensor(arr, timesteps, broadcast_shape):
"""
Extract values from a 1-D numpy array for a batch of indices.
:param arr: the 1-D numpy array.
:param timesteps: a tensor of indices into the array to extract.
:param broadcast_shape: a larger shape of K dimensions with the batch
dimension equal to the length of timesteps.
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
"""
res = torch.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
while len(res.shape) < len(broadcast_shape):
res = res[..., None]
return res.expand(broadcast_shape)
def space_timesteps(num_timesteps, section_counts):
"""
Create a list of timesteps to use from an original diffusion process,
given the number of timesteps we want to take from equally-sized portions
of the original process.
For example, if there's 300 timesteps and the section counts are [10,15,20]
then the first 100 timesteps are strided to be 10 timesteps, the second 100
are strided to be 15 timesteps, and the final 100 are strided to be 20.
If the stride is a string starting with "ddim", then the fixed striding
from the DDIM paper is used, and only one section is allowed.
:param num_timesteps: the number of diffusion steps in the original
process to divide up.
:param section_counts: either a list of numbers, or a string containing
comma-separated numbers, indicating the step count
per section. As a special case, use "ddimN" where N
is a number of steps to use the striding from the
DDIM paper.
:return: a set of diffusion steps from the original process to use.
"""
if isinstance(section_counts, str):
if section_counts.startswith("ddim"):
desired_count = int(section_counts[len("ddim"):])
for i in range(1, num_timesteps):
if len(range(0, num_timesteps, i)) == desired_count:
return set(range(0, num_timesteps, i))
raise ValueError(
f"cannot create exactly {num_timesteps} steps with an integer stride"
)
section_counts = [int(x) for x in section_counts.split(",")]
size_per = num_timesteps // len(section_counts)
extra = num_timesteps % len(section_counts)
start_idx = 0
all_steps = []
for i, section_count in enumerate(section_counts):
size = size_per + (1 if i < extra else 0)
if size < section_count:
raise ValueError(
f"cannot divide section of {size} steps into {section_count}"
)
if section_count <= 1:
frac_stride = 1
else:
frac_stride = (size - 1) / (section_count - 1)
cur_idx = 0.0
taken_steps = []
for _ in range(section_count):
taken_steps.append(start_idx + round(cur_idx))
cur_idx += frac_stride
all_steps += taken_steps
start_idx += size
return set(all_steps)
def timestep_embedding(timesteps, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=timesteps.device)
args = timesteps[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding |