File size: 20,651 Bytes
b24eac9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
import copy
import math
import pickle

import scipy
import torch.nn.functional as F
import numpy as np
import torch
import torch.nn as nn
from scipy.linalg import sqrtm
import re





def upgrade_state_dict(state_dict, prefixes=["encoder.sentence_encoder.", "encoder."]):
    """Removes prefixes 'model.encoder.sentence_encoder.' and 'model.encoder.'."""
    pattern = re.compile("^" + "|".join(prefixes))
    state_dict = {pattern.sub("", name): param for name, param in state_dict.items()}
    return state_dict

def map_t_to_alpha(t, alpha_scale):
    """
    Maps t in [0,1) to the range of alphas using the inverse CDF of an exponential distribution.

    Args:
        t (torch.Tensor): A tensor of values in [0,1).
        alpha_scale (float): The scaling factor used in the original alpha calculation.

    Returns:
        torch.Tensor: The corresponding alpha values.
    """
    if torch.any(t >= 1) or torch.any(t < 0):
        raise ValueError("t must be in the range [0,1).")
    
    return 1 + (-torch.log(1 - t)) * alpha_scale
    
    # return torch.clamp(1 + (-torch.log(1 - t)) * alpha_scale, torch.tensor(8).to(t.device))

def load_flybrain_designed_seqs(path):
    order = {'A': 0, 'C':1, 'G':2, 'T':3}
    f = open(path, "rb")
    data = pickle.load(f)
    arrays = []
    for seq in data['seq']:
        arrays.append([order[char] for char in seq])
    return torch.tensor(arrays, dtype=torch.long)


def update_ema(current_dict, prev_ema, gamma = 0.9):
    ema = copy.deepcopy(prev_ema)
    current_dict = copy.deepcopy(current_dict)
    for key, current_value in current_dict.items():
        ema_key  = 'ema_' + key
        if not np.isnan(current_value):
            if ema_key in prev_ema:
                ema[ema_key] = (1 - gamma) * current_value + gamma * prev_ema[ema_key]
            else:
                ema[ema_key] = current_value
    return ema

def min_max_str(x):
    return f'min {x.min()} max {x.max()}'

def get_wasserstein_dist(embeds1, embeds2):
    if np.isnan(embeds2).any() or np.isnan(embeds1).any() or len(embeds1) == 0 or len(embeds2) == 0:
        return float('nan')
    mu1, sigma1 = embeds1.mean(axis=0), np.cov(embeds1, rowvar=False)
    mu2, sigma2 = embeds2.mean(axis=0), np.cov(embeds2, rowvar=False)
    ssdiff = np.sum((mu1 - mu2) ** 2.0)
    covmean = sqrtm(sigma1.dot(sigma2))
    if np.iscomplexobj(covmean):
        covmean = covmean.real
    dist = ssdiff + np.trace(sigma1 + sigma2 - 2.0 * covmean)
    return dist

def simplex_proj(seq):
    """Algorithm from https://arxiv.org/abs/1309.1541 Weiran Wang, Miguel Á. Carreira-Perpiñán"""
    Y = seq.reshape(-1, seq.shape[-1])
    N, K = Y.shape
    X, _ = torch.sort(Y, dim=-1, descending=True)
    X_cumsum = torch.cumsum(X, dim=-1) - 1
    div_seq = torch.arange(1, K + 1, dtype=Y.dtype, device=Y.device)
    Xtmp = X_cumsum / div_seq.unsqueeze(0)

    greater_than_Xtmp = (X > Xtmp).sum(dim=1, keepdim=True)
    row_indices = torch.arange(N, dtype=torch.long, device=Y.device).unsqueeze(1)
    selected_Xtmp = Xtmp[row_indices, greater_than_Xtmp - 1]

    X = torch.max(Y - selected_Xtmp, torch.zeros_like(Y))
    return X.view(seq.shape)



def batch_project_simplex(v):
    u, _ = torch.sort(v, dim=1, descending=True)
    cssv = u.cumsum(dim=1)
    k = torch.arange(1, v.shape[1] + 1, device=v.device)
    rho = ((u * k) > (cssv - 1)).int().cumsum(dim=1).argmax(dim=1)
    theta = (cssv[torch.arange(v.shape[0]), rho] - 1) / (rho + 1).float()
    w = torch.maximum(v - theta.unsqueeze(1), torch.tensor(0.0, device=v.device))
    return w

if __name__ == "__main__":
    a = torch.softmax(torch.rand((5,4)), dim=-1)
    b = torch.rand((5,4)) - 1
    ab = torch.cat([a,b])
    ab_proj1 = batch_project_simplex(ab)
    ab_proj2 = simplex_proj(ab)
    print('ab_proj1 - ab_proj2',ab_proj1 - ab_proj2)
    print('ab_proj1 - ab', ab_proj1 - ab)
    print('ab_proj2.sum(-1)', ab_proj2.sum(-1))
    print('ab_proj2', ab_proj2)

def sample_cond_prob_path(args, seq, alphabet_size):
    B, L = seq.shape
    seq_one_hot = torch.nn.functional.one_hot(seq, num_classes=alphabet_size)
    if args.mode == 'dirichlet':
        alphas = torch.from_numpy(1 + scipy.stats.expon().rvs(size=B) * args.alpha_scale).to(seq.device).float()
        if args.fix_alpha:
            alphas = torch.ones(B, device=seq.device) * args.fix_alpha
        alphas_ = torch.ones(B, L, alphabet_size, device=seq.device)
        alphas_ = alphas_ + seq_one_hot * (alphas[:,None,None] - 1)
        xt = torch.distributions.Dirichlet(alphas_).sample()
    elif args.mode == 'distill':
        alphas = torch.zeros(B, device=seq.device)
        xt = torch.distributions.Dirichlet(torch.ones(B, L, alphabet_size, device=seq.device)).sample()
    elif args.mode == 'riemannian':
        t = torch.rand(B, device=seq.device)
        dirichlet = torch.distributions.Dirichlet(torch.ones(alphabet_size, device=seq.device))
        x0 = dirichlet.sample((B,L))
        x1 = seq_one_hot
        xt = t[:,None,None] * x1 + (1 - t[:,None,None]) * x0
        alphas = t
    elif args.mode == 'ardm' or args.mode == 'lrar':
        mask_prob = torch.rand(1, device=seq.device)
        mask = torch.rand(seq.shape, device=seq.device) < mask_prob
        if args.mode == 'lrar': mask = ~(torch.arange(L, device=seq.device) < (1-mask_prob) * L)
        xt = torch.where(mask, alphabet_size, seq) # mask token index
        xt = torch.nn.functional.one_hot(xt, num_classes=alphabet_size + 1).float() # plus one to include index for mask token
        alphas = mask_prob.expand(B)
    return xt, alphas

def expand_simplex(xt, alphas, prior_pseudocount):
    prior_weights = (prior_pseudocount / (alphas + prior_pseudocount - 1))[:, None, None]
    return torch.cat([xt * (1 - prior_weights), xt * prior_weights], -1), prior_weights


class DirichletConditionalFlow:
    def __init__(self, K=20, alpha_min=1, alpha_max=100, alpha_spacing=0.01):
        self.alphas = np.arange(alpha_min, alpha_max + alpha_spacing, alpha_spacing)
        self.beta_cdfs = []
        self.bs = np.linspace(0, 1, 1000)
        for alph in self.alphas:
            self.beta_cdfs.append(scipy.special.betainc(alph, K-1, self.bs))
        self.beta_cdfs = np.array(self.beta_cdfs)
        self.beta_cdfs_derivative = np.diff(self.beta_cdfs, axis=0) / alpha_spacing
        self.K = K

    def c_factor(self, bs, alpha):
        out1 = scipy.special.beta(alpha, self.K - 1)
        out2 = np.where(bs < 1, out1 / ((1 - bs) ** (self.K - 1)), 0)
        out = np.where((bs ** (alpha - 1)) > 0, out2 / (bs ** (alpha - 1)), 0)
        I_func = self.beta_cdfs_derivative[np.argmin(np.abs(alpha - self.alphas))]
        interp = -np.interp(bs, self.bs, I_func)
        final = interp * out
        return final


class GaussianSmearing(torch.nn.Module):
    # used to embed the edge distances
    def __init__(self, start=0.0, stop=5.0, embedding_dim=50):
        super().__init__()
        offset = torch.linspace(start, stop, embedding_dim)
        self.coeff = -0.5 / (offset[1] - offset[0]).item() ** 2
        self.register_buffer("offset", offset)
        self.embedding_dim = embedding_dim

    def forward(self, signal):
        shape = signal.shape
        signal = signal.view(-1, 1) - self.offset.view(1, -1) + 1E-6
        encoded = torch.exp(self.coeff * torch.pow(signal, 2))
        return encoded.view(*shape, self.embedding_dim)


class MonotonicFunction(torch.nn.Module):
    def __init__(self, init_max, num_bins):
        super().__init__()
        self.w = torch.nn.Parameter(torch.ones(num_bins) * np.log(init_max) - np.log(num_bins))
        self.num_bins = num_bins

    def forward(self, t):
        widths = torch.exp(self.w)
        right = torch.cumsum(widths, 0)
        left = right - widths

        bin_idx = (t * self.num_bins).long()
        frac_part = t - bin_idx * (1 / self.num_bins)

        return left[bin_idx] + (frac_part * self.num_bins) * (right[bin_idx] - left[bin_idx])

    def invert(self, f):
        widths = torch.exp(self.w)
        left = torch.cumsum(widths, 0) - widths
        bin_idx = (f.unsqueeze(-1) > left).sum(-1) - 1
        frac_part = f - left[bin_idx]
        return bin_idx / self.num_bins + frac_part / widths[bin_idx] / self.num_bins

    def derivative(self, t):
        widths = torch.exp(self.w)
        right = torch.cumsum(widths, 0)
        left = right - widths
        bin_idx = (t * self.num_bins).long()
        return (right[bin_idx] - left[bin_idx]) * self.num_bins

class SinusoidalEmbedding(nn.Module):
    """ from https://github.com/hojonathanho/diffusion/blob/master/diffusion_tf/nn.py   """
    def __init__(self, embedding_dim, embedding_scale, max_positions=10000):
        super().__init__()
        self.embedding_dim = embedding_dim
        self.max_positions = max_positions
        self.embedding_scale = embedding_scale

    def forward(self, signal):
        shape = signal.shape
        signal = signal.view(-1) * self.embedding_scale
        half_dim = self.embedding_dim // 2
        emb = math.log(self.max_positions) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, dtype=torch.float32, device=signal.device) * -emb)
        emb = signal.float()[:, None] * emb[None, :]
        emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
        if self.embedding_dim % 2 == 1:  # zero pad
            emb = F.pad(emb, (0, 1), mode='constant')
        assert emb.shape == (signal.shape[0], self.embedding_dim)
        return emb.view(*shape, self.embedding_dim )


class GaussianFourierProjection(nn.Module):
    """Gaussian Fourier embeddings for noise levels.
    from https://github.com/yang-song/score_sde_pytorch/blob/1618ddea340f3e4a2ed7852a0694a809775cf8d0/models/layerspp.py#L32
    """

    def __init__(self, embedding_dim=256, scale=1.0):
        super().__init__()
        self.W = nn.Parameter(torch.randn(embedding_dim//2) * scale, requires_grad=False)
        self.embedding_dim = embedding_dim

    def forward(self, signal):
        shape = signal.shape
        signal = signal.view(-1)
        signal_proj = signal[:, None] * self.W[None, :] * 2 * np.pi
        emb = torch.cat([torch.sin(signal_proj), torch.cos(signal_proj)], dim=-1)
        return emb.view(*shape, self.embedding_dim )

def get_signal_mapping(embedding_type, embedding_dim, embedding_scale=10000):
    if embedding_type == 'sinusoidal':
        emb_func = SinusoidalEmbedding(embedding_dim=embedding_dim, embedding_scale=embedding_scale)
    elif embedding_type == 'fourier':
        emb_func = GaussianFourierProjection(embedding_dim=embedding_dim, scale=embedding_scale)
    elif embedding_type == 'gaussian':
        emb_func = GaussianSmearing(0.0, 1, embedding_dim)
    else:
        raise NotImplemented
    return emb_func

def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
    """
    Create a beta schedule that discretizes the given alpha_t_bar function,
    which defines the cumulative product of (1-beta) over time from t = [0,1].

    :param num_diffusion_timesteps: the number of betas to produce.
    :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
                      produces the cumulative product of (1-beta) up to that
                      part of the diffusion process.
    :param max_beta: the maximum beta to use; use values lower than 1 to
                     prevent singularities.
    """
    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return np.array(betas)

def get_beta_schedule(num_steps):

    return betas_for_alpha_bar(
            num_steps,
            lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
        )


class GaussianDiffusionSchedule:
    """
    Utilities for training and sampling diffusion models.

    Ported directly from here, and then adapted over time to further experimentation.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42

    :param betas: a 1-D numpy array of betas for each diffusion timestep,
                  starting at T and going to 1.
    :param model_mean_type: a ModelMeanType determining what the model outputs.
    :param model_var_type: a ModelVarType determining how variance is output.
    :param loss_type: a LossType determining the loss function to use.
    :param rescale_timesteps: if True, pass floating point timesteps into the
                              model so that they are always scaled like in the
                              original paper (0 to 1000).
    """

    def __init__(
            self,
            timesteps,
            noise_scale=1.0,
    ):
        betas = get_beta_schedule(timesteps)

        # Use float64 for accuracy.
        betas = np.array(betas, dtype=np.float64)
        self.betas = betas
        assert len(betas.shape) == 1, "betas must be 1-D"
        assert (betas > 0).all() and (betas <= 1).all()

        self.timesteps = int(betas.shape[0])
        self.noise_scale = noise_scale

        alphas = 1.0 - betas
        self.alphas_cumprod = np.cumprod(alphas, axis=0)
        self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1])
        self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0)
        assert self.alphas_cumprod_prev.shape == (self.timesteps,)

        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
        self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
        self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod)
        self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
        self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1)

        # calculations for posterior q(x_{t-1} | x_t, x_0)
        self.posterior_variance = (
                betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
        )
        # log calculation clipped because the posterior variance is 0 at the
        # beginning of the diffusion chain.
        self.posterior_log_variance_clipped = np.log(
            np.append(self.posterior_variance[1], self.posterior_variance[1:])
        )
        self.posterior_mean_coef1 = (
                betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
        )
        self.posterior_mean_coef2 = (
                (1.0 - self.alphas_cumprod_prev)
                * np.sqrt(alphas)
                / (1.0 - self.alphas_cumprod)
        )

    def q_sample(self, x_start, t, noise=None):
        """
        Diffuse the data for a given number of diffusion steps.

        In other words, sample from q(x_t | x_0).

        :param x_start: the initial data batch.
        :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
        :param noise: if specified, the split-out normal noise.
        :return: A noisy version of x_start.
        """
        if noise is None:
            noise = self.noise_scale * torch.randn_like(x_start)
            # add scaling here
        assert noise.shape == x_start.shape
        return (
                _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
                + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
                * noise
        )

    def q_posterior_mean_variance(self, x_start, x_t, t):
        """
        Compute the mean and variance of the diffusion posterior:

            q(x_{t-1} | x_t, x_0)

        """
        assert x_start.shape == x_t.shape
        posterior_mean = (
                _extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
                + _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
        )
        posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape)
        posterior_log_variance_clipped = _extract_into_tensor(
            self.posterior_log_variance_clipped, t, x_t.shape
        )

        posterior_variance = (self.noise_scale ** 2) * posterior_variance
        posterior_log_variance_clipped = 2 * np.log(self.noise_scale) + posterior_log_variance_clipped

        assert (
                posterior_mean.shape[0]
                == posterior_variance.shape[0]
                == posterior_log_variance_clipped.shape[0]
                == x_start.shape[0]
        )
        return posterior_mean, posterior_variance, posterior_log_variance_clipped


def _extract_into_tensor(arr, timesteps, broadcast_shape):
    """
    Extract values from a 1-D numpy array for a batch of indices.

    :param arr: the 1-D numpy array.
    :param timesteps: a tensor of indices into the array to extract.
    :param broadcast_shape: a larger shape of K dimensions with the batch
                            dimension equal to the length of timesteps.
    :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
    """
    res = torch.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
    while len(res.shape) < len(broadcast_shape):
        res = res[..., None]
    return res.expand(broadcast_shape)


def space_timesteps(num_timesteps, section_counts):
    """
    Create a list of timesteps to use from an original diffusion process,
    given the number of timesteps we want to take from equally-sized portions
    of the original process.

    For example, if there's 300 timesteps and the section counts are [10,15,20]
    then the first 100 timesteps are strided to be 10 timesteps, the second 100
    are strided to be 15 timesteps, and the final 100 are strided to be 20.

    If the stride is a string starting with "ddim", then the fixed striding
    from the DDIM paper is used, and only one section is allowed.

    :param num_timesteps: the number of diffusion steps in the original
                          process to divide up.
    :param section_counts: either a list of numbers, or a string containing
                           comma-separated numbers, indicating the step count
                           per section. As a special case, use "ddimN" where N
                           is a number of steps to use the striding from the
                           DDIM paper.
    :return: a set of diffusion steps from the original process to use.
    """
    if isinstance(section_counts, str):
        if section_counts.startswith("ddim"):
            desired_count = int(section_counts[len("ddim"):])
            for i in range(1, num_timesteps):
                if len(range(0, num_timesteps, i)) == desired_count:
                    return set(range(0, num_timesteps, i))
            raise ValueError(
                f"cannot create exactly {num_timesteps} steps with an integer stride"
            )
        section_counts = [int(x) for x in section_counts.split(",")]
    size_per = num_timesteps // len(section_counts)
    extra = num_timesteps % len(section_counts)
    start_idx = 0
    all_steps = []
    for i, section_count in enumerate(section_counts):
        size = size_per + (1 if i < extra else 0)
        if size < section_count:
            raise ValueError(
                f"cannot divide section of {size} steps into {section_count}"
            )
        if section_count <= 1:
            frac_stride = 1
        else:
            frac_stride = (size - 1) / (section_count - 1)
        cur_idx = 0.0
        taken_steps = []
        for _ in range(section_count):
            taken_steps.append(start_idx + round(cur_idx))
            cur_idx += frac_stride
        all_steps += taken_steps
        start_idx += size
    return set(all_steps)

def timestep_embedding(timesteps, dim, max_period=10000):
    """
    Create sinusoidal timestep embeddings.

    :param timesteps: a 1-D Tensor of N indices, one per batch element.
                      These may be fractional.
    :param dim: the dimension of the output.
    :param max_period: controls the minimum frequency of the embeddings.
    :return: an [N x dim] Tensor of positional embeddings.
    """
    half = dim // 2
    freqs = torch.exp(
        -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
    ).to(device=timesteps.device)
    args = timesteps[:, None].float() * freqs[None]
    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
    if dim % 2:
        embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
    return embedding