from __future__ import division from __future__ import print_function import os.path as osp import numpy as np from easydict import EasyDict as edict __C = edict() cfg = __C # Dataset name: flowers, birds __C.DATASET_NAME = 'birds' __C.EMBEDDING_TYPE = 'cnn-rnn' __C.CONFIG_NAME = '' __C.GPU_ID = '0' __C.CUDA = True __C.WORKERS = 6 __C.NET_G = '' __C.NET_D = '' __C.STAGE1_G = '' __C.DATA_DIR = '' __C.EVAL_DIR = '' __C.VIS_COUNT = 64 __C.Z_DIM = 100 __C.RIRSIZE = 4096 __C.STAGE = 1 # Training options __C.TRAIN = edict() __C.TRAIN.FLAG = True __C.TRAIN.BATCH_SIZE = 64 __C.TRAIN.MAX_EPOCH = 600 __C.TRAIN.SNAPSHOT_INTERVAL = 50 __C.TRAIN.PRETRAINED_MODEL = '' __C.TRAIN.PRETRAINED_EPOCH = 600 __C.TRAIN.LR_DECAY_EPOCH = 600 __C.TRAIN.DISCRIMINATOR_LR = 2e-4 __C.TRAIN.GENERATOR_LR = 2e-4 __C.TRAIN.COEFF = edict() __C.TRAIN.COEFF.KL = 2.0 # Modal options __C.GAN = edict() __C.GAN.CONDITION_DIM = 128 __C.GAN.DF_DIM = 64 __C.GAN.GF_DIM = 128 __C.GAN.R_NUM = 4 __C.TEXT = edict() __C.TEXT.DIMENSION = 1024 def _merge_a_into_b(a, b): """Merge config dictionary a into config dictionary b, clobbering the options in b whenever they are also specified in a. """ if type(a) is not edict: return for k, v in a.items(): # a must specify keys that are in b if k not in b: raise KeyError('{} is not a valid config key'.format(k)) # the types must match, too old_type = type(b[k]) if old_type is not type(v): if isinstance(b[k], np.ndarray): v = np.array(v, dtype=b[k].dtype) else: raise ValueError(('Type mismatch ({} vs. {}) ' 'for config key: {}').format(type(b[k]), type(v), k)) # recursively merge dicts if type(v) is edict: try: _merge_a_into_b(a[k], b[k]) except: print('Error under config key: {}'.format(k)) raise else: b[k] = v def cfg_from_file(filename): """Load a config file and merge it into the default options.""" import yaml with open(filename, 'r') as f: yaml_cfg = edict(yaml.load(f)) _merge_a_into_b(yaml_cfg, __C)