File size: 2,518 Bytes
283e370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6f5f80
283e370
 
 
 
 
 
a6f5f80
 
 
 
283e370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# /// script
# dependencies = [
#     "trl>=0.18.0",
#     "peft>=0.7.0",
#     "transformers>=4.51.0",
#     "accelerate>=0.24.0",
#     "trackio",
#     "bitsandbytes",
# ]
# ///

import trackio
from datasets import load_dataset
from peft import LoraConfig
from trl import SFTTrainer, SFTConfig
from transformers import AutoTokenizer

# Load dataset
print("πŸ“¦ Loading dataset...")
dataset = load_dataset("open-r1/codeforces-cots", split="train")
print(f"βœ… Dataset loaded: {len(dataset)} examples")

# Keep only the messages column (TRL SFT format)
dataset = dataset.select_columns(["messages"])
print(f"βœ… Kept only 'messages' column")

# Create train/eval split
print("πŸ”€ Creating train/eval split...")
dataset_split = dataset.train_test_split(test_size=0.02, seed=42)
train_dataset = dataset_split["train"]
eval_dataset = dataset_split["test"]
print(f"   Train: {len(train_dataset)} examples")
print(f"   Eval: {len(eval_dataset)} examples")

# Training configuration
config = SFTConfig(
    # Hub settings
    output_dir="qwen3-codeforces-cots-sft",
    push_to_hub=True,
    hub_model_id="burtenshaw/qwen3-codeforces-cots-sft",
    hub_strategy="every_save",

    # Training parameters
    num_train_epochs=1,
    per_device_train_batch_size=2,
    gradient_accumulation_steps=8,
    learning_rate=2e-4,
    max_length=4096,

    # Logging & checkpointing
    logging_steps=25,
    save_strategy="steps",
    save_steps=500,
    save_total_limit=2,

    # Evaluation
    eval_strategy="steps",
    eval_steps=500,

    # Optimization
    warmup_ratio=0.05,
    lr_scheduler_type="cosine",
    bf16=True,
    gradient_checkpointing=True,

    # Monitoring
    report_to="trackio",
    project="codeforces-sft",
    run_name="qwen3-0.6b-codeforces-cots",
)

# LoRA configuration
peft_config = LoraConfig(
    r=32,
    lora_alpha=64,
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM",
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
)

# Initialize and train
print("🎯 Initializing trainer...")
trainer = SFTTrainer(
    model="Qwen/Qwen3-0.6B",
    train_dataset=train_dataset,
    eval_dataset=eval_dataset,
    args=config,
    peft_config=peft_config,
)

print("πŸš€ Starting training...")
trainer.train()

print("πŸ’Ύ Pushing to Hub...")
trainer.push_to_hub()

print("βœ… Complete! Model at: https://huggingface.co/burtenshaw/qwen3-codeforces-cots-sft")
print("πŸ“Š View metrics at: https://huggingface.co/spaces/burtenshaw/trackio")