File size: 2,518 Bytes
283e370 a6f5f80 283e370 a6f5f80 283e370 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
# /// script
# dependencies = [
# "trl>=0.18.0",
# "peft>=0.7.0",
# "transformers>=4.51.0",
# "accelerate>=0.24.0",
# "trackio",
# "bitsandbytes",
# ]
# ///
import trackio
from datasets import load_dataset
from peft import LoraConfig
from trl import SFTTrainer, SFTConfig
from transformers import AutoTokenizer
# Load dataset
print("π¦ Loading dataset...")
dataset = load_dataset("open-r1/codeforces-cots", split="train")
print(f"β
Dataset loaded: {len(dataset)} examples")
# Keep only the messages column (TRL SFT format)
dataset = dataset.select_columns(["messages"])
print(f"β
Kept only 'messages' column")
# Create train/eval split
print("π Creating train/eval split...")
dataset_split = dataset.train_test_split(test_size=0.02, seed=42)
train_dataset = dataset_split["train"]
eval_dataset = dataset_split["test"]
print(f" Train: {len(train_dataset)} examples")
print(f" Eval: {len(eval_dataset)} examples")
# Training configuration
config = SFTConfig(
# Hub settings
output_dir="qwen3-codeforces-cots-sft",
push_to_hub=True,
hub_model_id="burtenshaw/qwen3-codeforces-cots-sft",
hub_strategy="every_save",
# Training parameters
num_train_epochs=1,
per_device_train_batch_size=2,
gradient_accumulation_steps=8,
learning_rate=2e-4,
max_length=4096,
# Logging & checkpointing
logging_steps=25,
save_strategy="steps",
save_steps=500,
save_total_limit=2,
# Evaluation
eval_strategy="steps",
eval_steps=500,
# Optimization
warmup_ratio=0.05,
lr_scheduler_type="cosine",
bf16=True,
gradient_checkpointing=True,
# Monitoring
report_to="trackio",
project="codeforces-sft",
run_name="qwen3-0.6b-codeforces-cots",
)
# LoRA configuration
peft_config = LoraConfig(
r=32,
lora_alpha=64,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
)
# Initialize and train
print("π― Initializing trainer...")
trainer = SFTTrainer(
model="Qwen/Qwen3-0.6B",
train_dataset=train_dataset,
eval_dataset=eval_dataset,
args=config,
peft_config=peft_config,
)
print("π Starting training...")
trainer.train()
print("πΎ Pushing to Hub...")
trainer.push_to_hub()
print("β
Complete! Model at: https://huggingface.co/burtenshaw/qwen3-codeforces-cots-sft")
print("π View metrics at: https://huggingface.co/spaces/burtenshaw/trackio")
|