--- license: mit dataset_info: features: - name: image dtype: array3_d: shape: - 512 - 512 - 3 dtype: uint8 - name: filename dtype: string splits: - name: train num_bytes: 34195458528 num_examples: 18614 download_size: 6667979906 dataset_size: 34195458528 configs: - config_name: default data_files: - split: train path: data/train-* --- ``` from datasets import load_dataset from PIL import Image import numpy as np import os from tqdm import tqdm # 加载数据集 dataset_path = "path_to/style_fonts_img" dataset = load_dataset(dataset_path) # 创建保存目录 save_dir = os.path.join(dataset_path, "extracted_images") os.makedirs(save_dir, exist_ok=True) # 获取数据集大小 total_samples = len(dataset['train']) print(f"数据集共有 {total_samples} 个样本") # 使用tqdm创建进度条 for i, example in tqdm(enumerate(dataset['train']), total=total_samples, desc="处理图像"): try: # 获取图像数据 image_array = example['image'] # 转换为PIL图像 image = Image.fromarray(np.uint8(image_array)) # 获取文件名 filename = example['filename'] # 保存图像 image_path = os.path.join(save_dir, filename) image.save(image_path) # 保存文本 if 'text' in example and example['text']: text_filename = os.path.splitext(filename)[0] + '.txt' text_path = os.path.join(text_dir, text_filename) with open(text_path, 'w', encoding='utf-8') as f: f.write(example['text']) # print(f"已保存 {filename}") # 只处理前10个样本(可选) if i >= 9: break except Exception as e: print(f"处理样本 {i} 时出错: {e}") print("处理完成!") ```