Create dataset.py
Browse files- dataset.py +202 -0
dataset.py
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections import defaultdict
|
| 2 |
+
import os
|
| 3 |
+
import json
|
| 4 |
+
import csv
|
| 5 |
+
|
| 6 |
+
import datasets
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
_DESCRIPTION = """
|
| 10 |
+
A dataset g and interpretation.
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
+
_CITATION = """
|
| 14 |
+
"""
|
| 15 |
+
|
| 16 |
+
_HOMEPAGE = "https://github.com/aztro/mabama-v"
|
| 17 |
+
|
| 18 |
+
_LICENSE = "CC0, also see https://www.europarl.europa.eu/legal-notice/es/"
|
| 19 |
+
|
| 20 |
+
_ASR_LANGUAGES = [
|
| 21 |
+
"es"
|
| 22 |
+
|
| 23 |
+
]
|
| 24 |
+
_ASR_ACCENTED_LANGUAGES = [
|
| 25 |
+
"es_accented"
|
| 26 |
+
]
|
| 27 |
+
|
| 28 |
+
_LANGUAGES = _ASR_LANGUAGES + _ASR_ACCENTED_LANGUAGES
|
| 29 |
+
|
| 30 |
+
_BASE_DATA_DIR = "data/"
|
| 31 |
+
|
| 32 |
+
_N_SHARDS_FILE = _BASE_DATA_DIR + "n_files.json"
|
| 33 |
+
|
| 34 |
+
_AUDIO_ARCHIVE_PATH = _BASE_DATA_DIR + "es/{split}/{split}_part_{n_shard}.wav"
|
| 35 |
+
|
| 36 |
+
_METADATA_PATH = _BASE_DATA_DIR + "es/asr_{split}.csv"
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class VoxpopuliConfig(datasets.BuilderConfig):
|
| 40 |
+
"""BuilderConfig for VoxPopuli."""
|
| 41 |
+
|
| 42 |
+
def __init__(self, name, languages="es", **kwargs):
|
| 43 |
+
"""
|
| 44 |
+
Args:
|
| 45 |
+
name: `string` or `List[string]`:
|
| 46 |
+
name of a config: either one of the supported languages or "multilang" for many languages.
|
| 47 |
+
By default, "multilang" config includes all languages, including accented ones.
|
| 48 |
+
To specify a custom set of languages, pass them to the `languages` parameter
|
| 49 |
+
languages: `List[string]`: if config is "multilang" can be either "all" for all available languages,
|
| 50 |
+
excluding accented ones (default), or a custom list of languages.
|
| 51 |
+
**kwargs: keyword arguments forwarded to super.
|
| 52 |
+
"""
|
| 53 |
+
if name == "es":
|
| 54 |
+
self.languages = _ASR_LANGUAGES if languages == "all" else languages
|
| 55 |
+
name = "multilang" if languages == "all" else "_".join(languages)
|
| 56 |
+
else:
|
| 57 |
+
self.languages = [name]
|
| 58 |
+
|
| 59 |
+
super().__init__(name=name, **kwargs)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class Voxpopuli(datasets.GeneratorBasedBuilder):
|
| 63 |
+
"""The VoxPopuli dataset."""
|
| 64 |
+
|
| 65 |
+
VERSION = datasets.Version("1.3.0") # TODO: version
|
| 66 |
+
BUILDER_CONFIGS = [
|
| 67 |
+
VoxpopuliConfig(
|
| 68 |
+
name=name,
|
| 69 |
+
version=datasets.Version("1.3.0"),
|
| 70 |
+
)
|
| 71 |
+
for name in _LANGUAGES + ["multilang"]
|
| 72 |
+
]
|
| 73 |
+
DEFAULT_WRITER_BATCH_SIZE = 256
|
| 74 |
+
|
| 75 |
+
def _info(self):
|
| 76 |
+
features = datasets.Features(
|
| 77 |
+
{
|
| 78 |
+
"audio_id": datasets.Value("string"),
|
| 79 |
+
"language": datasets.ClassLabel(names=_LANGUAGES),
|
| 80 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
| 81 |
+
"raw_text": datasets.Value("string"),
|
| 82 |
+
"normalized_text": datasets.Value("string"),
|
| 83 |
+
"gender": datasets.Value("string"), # TODO: ClassVar?
|
| 84 |
+
"speaker_id": datasets.Value("string"),
|
| 85 |
+
"is_gold_transcript": datasets.Value("bool"),
|
| 86 |
+
"accent": datasets.Value("string"),
|
| 87 |
+
}
|
| 88 |
+
)
|
| 89 |
+
return datasets.DatasetInfo(
|
| 90 |
+
description=_DESCRIPTION,
|
| 91 |
+
features=features,
|
| 92 |
+
homepage=_HOMEPAGE,
|
| 93 |
+
license=_LICENSE,
|
| 94 |
+
citation=_CITATION,
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
def _split_generators(self, dl_manager):
|
| 98 |
+
n_shards_path = dl_manager.download_and_extract(_N_SHARDS_FILE)
|
| 99 |
+
with open(n_shards_path) as f:
|
| 100 |
+
n_shards = json.load(f)
|
| 101 |
+
|
| 102 |
+
if self.config.name == "en_accented":
|
| 103 |
+
splits = ["test"]
|
| 104 |
+
else:
|
| 105 |
+
splits = ["train", "dev", "test"]
|
| 106 |
+
|
| 107 |
+
audio_urls = defaultdict(dict)
|
| 108 |
+
for split in splits:
|
| 109 |
+
for lang in self.config.languages:
|
| 110 |
+
audio_urls[split][lang] = [
|
| 111 |
+
_AUDIO_ARCHIVE_PATH.format(lang=lang, split=split, n_shard=i) for i in range(n_shards[lang][split])
|
| 112 |
+
]
|
| 113 |
+
|
| 114 |
+
meta_urls = defaultdict(dict)
|
| 115 |
+
for split in splits:
|
| 116 |
+
for lang in self.config.languages:
|
| 117 |
+
meta_urls[split][lang] = _METADATA_PATH.format(lang=lang, split=split)
|
| 118 |
+
|
| 119 |
+
# dl_manager.download_config.num_proc = len(urls)
|
| 120 |
+
|
| 121 |
+
meta_paths = dl_manager.download_and_extract(meta_urls)
|
| 122 |
+
audio_paths = dl_manager.download(audio_urls)
|
| 123 |
+
|
| 124 |
+
local_extracted_audio_paths = (
|
| 125 |
+
dl_manager.extract(audio_paths) if not dl_manager.is_streaming else
|
| 126 |
+
{
|
| 127 |
+
split: {lang: [None] * len(audio_paths[split][lang]) for lang in self.config.languages} for split in splits
|
| 128 |
+
}
|
| 129 |
+
)
|
| 130 |
+
if self.config.name == "en_accented":
|
| 131 |
+
return [
|
| 132 |
+
datasets.SplitGenerator(
|
| 133 |
+
name=datasets.Split.TEST,
|
| 134 |
+
gen_kwargs={
|
| 135 |
+
"audio_archives": {
|
| 136 |
+
lang: [dl_manager.iter_archive(archive) for archive in lang_archives]
|
| 137 |
+
for lang, lang_archives in audio_paths["test"].items()
|
| 138 |
+
},
|
| 139 |
+
"local_extracted_archives_paths": local_extracted_audio_paths["test"],
|
| 140 |
+
"metadata_paths": meta_paths["test"],
|
| 141 |
+
}
|
| 142 |
+
),
|
| 143 |
+
]
|
| 144 |
+
|
| 145 |
+
return [
|
| 146 |
+
datasets.SplitGenerator(
|
| 147 |
+
name=datasets.Split.TRAIN,
|
| 148 |
+
gen_kwargs={
|
| 149 |
+
"audio_archives": {
|
| 150 |
+
lang: [dl_manager.iter_archive(archive) for archive in lang_archives]
|
| 151 |
+
for lang, lang_archives in audio_paths["train"].items()
|
| 152 |
+
},
|
| 153 |
+
"local_extracted_archives_paths": local_extracted_audio_paths["train"],
|
| 154 |
+
"metadata_paths": meta_paths["train"],
|
| 155 |
+
}
|
| 156 |
+
),
|
| 157 |
+
datasets.SplitGenerator(
|
| 158 |
+
name=datasets.Split.VALIDATION,
|
| 159 |
+
gen_kwargs={
|
| 160 |
+
"audio_archives": {
|
| 161 |
+
lang: [dl_manager.iter_archive(archive) for archive in lang_archives]
|
| 162 |
+
for lang, lang_archives in audio_paths["dev"].items()
|
| 163 |
+
},
|
| 164 |
+
"local_extracted_archives_paths": local_extracted_audio_paths["dev"],
|
| 165 |
+
"metadata_paths": meta_paths["dev"],
|
| 166 |
+
}
|
| 167 |
+
),
|
| 168 |
+
datasets.SplitGenerator(
|
| 169 |
+
name=datasets.Split.TEST,
|
| 170 |
+
gen_kwargs={
|
| 171 |
+
"audio_archives": {
|
| 172 |
+
lang: [dl_manager.iter_archive(archive) for archive in lang_archives]
|
| 173 |
+
for lang, lang_archives in audio_paths["test"].items()
|
| 174 |
+
},
|
| 175 |
+
"local_extracted_archives_paths": local_extracted_audio_paths["test"],
|
| 176 |
+
"metadata_paths": meta_paths["test"],
|
| 177 |
+
}
|
| 178 |
+
),
|
| 179 |
+
]
|
| 180 |
+
|
| 181 |
+
def _generate_examples(self, audio_archives, local_extracted_archives_paths, metadata_paths):
|
| 182 |
+
assert len(metadata_paths) == len(audio_archives) == len(local_extracted_archives_paths)
|
| 183 |
+
features = ["raw_text", "normalized_text", "speaker_id", "gender", "is_gold_transcript", "accent"]
|
| 184 |
+
|
| 185 |
+
for lang in self.config.languages:
|
| 186 |
+
assert len(audio_archives[lang]) == len(local_extracted_archives_paths[lang])
|
| 187 |
+
|
| 188 |
+
meta_path = metadata_paths[lang]
|
| 189 |
+
with open(meta_path) as f:
|
| 190 |
+
metadata = {x["id"]: x for x in csv.DictReader(f, delimiter="\t")}
|
| 191 |
+
|
| 192 |
+
for audio_archive, local_extracted_archive_path in zip(audio_archives[lang], local_extracted_archives_paths[lang]):
|
| 193 |
+
for audio_filename, audio_file in audio_archive:
|
| 194 |
+
audio_id = audio_filename.split(os.sep)[-1].split(".wav")[0]
|
| 195 |
+
path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path else audio_filename
|
| 196 |
+
|
| 197 |
+
yield audio_id, {
|
| 198 |
+
"audio_id": audio_id,
|
| 199 |
+
"language": lang,
|
| 200 |
+
**{feature: metadata[audio_id][feature] for feature in features},
|
| 201 |
+
"audio": {"path": path, "bytes": audio_file.read()},
|
| 202 |
+
}
|