tmp_Pro / eval /modules /model_manager.py
czyPL's picture
Add files using upload-large-folder tool
293a64d verified
import json
import time
import logging
from typing import Optional, Dict, Any, Callable, Tuple
from transformers import AutoTokenizer
from openai import OpenAI
import requests
from functools import wraps
import os
# configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def model_query_decorator(func: Callable) -> Callable:
"""
model query decorator, handle common pre-processing and retry logic
get max_tries and time_sleep from self instance dynamically
"""
@wraps(func)
def wrapper(self, prompt: str) -> str:
# pre-processing: check empty prompt
if not prompt or not prompt.strip():
logger.warning("Empty prompt, return empty string")
return "", None
# pre-processing: truncate prompt
processed_prompt = self._truncate_prompt(prompt.strip())
# get retry parameters from self instance
max_tries = getattr(self, 'max_tries', 5)
time_sleep = getattr(self, 'time_sleep', 1.0)
time.sleep(time_sleep)
# retry mechanism
last_exception = None
for attempt in range(1, max_tries + 1):
try:
logger.info(f"Try {attempt} times...")
# call the specific query method
answer, thinking = func(self, processed_prompt)
logger.info(f"Query successful, try {attempt} times")
return answer, thinking
except KeyboardInterrupt:
logger.info("User interrupt")
raise
except Exception as e:
last_exception = e
logger.warning(f"API error (try {attempt}/{max_tries}): {e}")
# exponential backoff strategy
if attempt < max_tries:
sleep_time = time_sleep * (2 ** (attempt - 1))
logger.info(f"Wait {sleep_time:.1f} seconds and retry...")
time.sleep(sleep_time)
# all tries failed
logger.error(f"All {max_tries} tries failed, last error: {last_exception}")
return "", None
return wrapper
class ModelManagerBase:
"""Base model manager"""
def __init__(
self,
tokenizer_path: str,
context_max_length: int,
url: str,
api_key: str,
temperature: float,
max_new_tokens: int,
timeout: int,
max_tries: int,
time_sleep: float,
):
# parameter validation
if not os.path.exists(tokenizer_path):
raise ValueError("tokenizer_path is not found")
if context_max_length <= 0:
raise ValueError("context_max_length must be greater than 0")
if max_tries <= 0:
raise ValueError("max_tries must be greater than 0")
self.tokenizer_path = tokenizer_path
self.context_max_length = context_max_length
self.url = url
self.api_key = api_key
self.temperature = temperature
self.max_new_tokens = max_new_tokens
self.timeout = timeout
self.max_tries = max_tries
self.time_sleep = time_sleep
self.tokenizer = self._get_tokenizer()
def _get_tokenizer(self) -> AutoTokenizer:
"""Get tokenizer"""
try:
return AutoTokenizer.from_pretrained(
self.tokenizer_path,
trust_remote_code=True
)
except Exception as e:
logger.error(f"Failed to load tokenizer: {e}")
raise
def _truncate_prompt(self, prompt: str) -> str:
"""Truncate prompt, keep important parts"""
input_ids = self.tokenizer.encode(prompt)
if len(input_ids) <= self.context_max_length:
return prompt
truncated_input_ids = input_ids[:self.context_max_length//2] + input_ids[-self.context_max_length//2:]
truncated_prompt = self.tokenizer.decode(
truncated_input_ids,
skip_special_tokens=True
)
return truncated_prompt
@model_query_decorator
def query(self, processed_prompt: str) -> str:
"""Query LLM model"""
raise NotImplementedError("Subclass must implement this method")
class ModelManagerMagistral(ModelManagerBase):
"""Magistral model manager"""
def __init__(
self,
model_name: str,
tokenizer_path: str = "",
context_max_length: int = 120000, # 128k - 8k
url: str = "http://127.0.0.1:8000/v1",
api_key: str = "EMPTY",
temperature: float = 0.7,
max_new_tokens: int = 8192,
timeout: int = 1200,
max_tries: int = 5,
time_sleep: float = 1.0,
extra_body: Optional[Dict[str, Any]] = None,
):
super().__init__(tokenizer_path, context_max_length, url, api_key,
temperature, max_new_tokens, timeout, max_tries, time_sleep)
self.model_name = model_name
self.extra_body = extra_body or {}
self.client = self._create_client()
self.system_prompt = """First draft your thinking process (inner monologue) until you arrive at a response. Format your response using Markdown, and use LaTeX for any mathematical equations. Write both your thoughts and the response in the same language as the input.\n\nYour thinking process must follow the template below:[THINK]Your thoughts or/and draft, like working through an exercise on scratch paper. Be as casual and as long as you want until you are confident to generate the response. Use the same language as the input.[/THINK]Here, provide a self-contained response."""
def _create_client(self) -> OpenAI:
"""Create Magistral client"""
try:
return OpenAI(
base_url=self.url,
api_key=self.api_key
)
except Exception as e:
logger.error(f"Failed to create OpenAI client: {e}")
raise
@model_query_decorator
def query(self, processed_prompt: str) -> Tuple[str, Optional[str]]:
"""Query LLM model - only handle OpenAI specific logic"""
completion = self.client.chat.completions.create(
model=self.model_name,
messages=[
{"role": "system", "content": self.system_prompt},
{"role": "user", "content": processed_prompt}
],
temperature=self.temperature,
extra_body=self.extra_body,
max_tokens=self.max_new_tokens,
timeout=self.timeout,
)
answer = completion.choices[0].message.content
try:
thinking = completion.choices[0].message.reasoning_content
except:
thinking = None
return answer, thinking
class ModelManagerOpenAI(ModelManagerBase):
"""OpenAI model manager"""
def __init__(
self,
model_name: str,
tokenizer_path: str = "model/Tokenizers/qwen",
context_max_length: int = 120000, # 128k - 8k
url: str = "http://127.0.0.1:8000/v1",
api_key: str = "EMPTY",
temperature: float = 1.0,
max_new_tokens: int = 8192,
timeout: int = 1200,
max_tries: int = 5,
time_sleep: float = 1.0,
extra_body: Optional[Dict[str, Any]] = None,
):
super().__init__(tokenizer_path, context_max_length, url, api_key,
temperature, max_new_tokens, timeout, max_tries, time_sleep)
self.model_name = model_name
self.extra_body = extra_body or {}
self.client = self._create_client()
def _create_client(self) -> OpenAI:
"""Create OpenAI client"""
try:
return OpenAI(
base_url=self.url,
api_key=self.api_key
)
except Exception as e:
logger.error(f"Failed to create OpenAI client: {e}")
raise
@model_query_decorator
def query(self, processed_prompt: str) -> Tuple[str, Optional[str]]:
"""Query LLM model - only handle OpenAI specific logic"""
completion = self.client.chat.completions.create(
model=self.model_name,
messages=[{"role": "user", "content": processed_prompt}],
temperature=self.temperature,
extra_body=self.extra_body,
max_tokens=self.max_new_tokens,
timeout=self.timeout,
)
answer = completion.choices[0].message.content
try:
thinking = completion.choices[0].message.reasoning_content
except:
thinking = None
return answer, thinking
class ModelManagerGemini3(ModelManagerBase):
"""Gemini 3.0 model manager"""
def __init__(
self,
tokenizer_path: str = "model/Tokenizers/gemini",
context_max_length: int = 1000000, # 1M
url: str = "https://runway.devops.rednote.life/openai/google/v1:generateContent",
api_key: str = "162420e2621c480d9f8ab1bb7b8c4c91",
temperature: float = 1.0, # default 1.0
max_new_tokens: int = 32768,
timeout: int = 1200,
max_tries: int = 5,
time_sleep: float = 1.0,
):
super().__init__(tokenizer_path, context_max_length, url, api_key,
temperature, max_new_tokens, timeout, max_tries, time_sleep)
self.headers = {
'api-key': self.api_key,
'Content-Type': 'application/json'
}
@model_query_decorator
def query(self, processed_prompt: str) -> Tuple[str, Optional[str]]:
"""Query LLM model - only handle Gemini specific logic"""
# prepare payload
payload = json.dumps({
"contents": [
{
"role": "user",
"parts": [
{
"text": processed_prompt
}
]
}
],
"generationConfig": {
"maxOutputTokens": self.max_new_tokens,
"temperature": self.temperature,
"thinkingConfig": {
"thinking_level": "high" # default "high"
}
}
})
# send request
response = requests.request("POST", self.url, headers=self.headers, data=payload).json()
# extract result
return response["candidates"][0]["content"]["parts"][0]["text"], None
class ModelManagerGemini25(ModelManagerBase):
"""Gemini 2.5 thinking model manager"""
def __init__(
self,
tokenizer_path: str = "model/Tokenizers/gemini",
context_max_length: int = 1000000, # 1M
url: str = "https://runway.devops.rednote.life/openai/google/v1:generateContent",
api_key: str = "66c251052f44452a834ce83d0c7fd3ba",
temperature: float = 1.0, # default 1.0
max_new_tokens: int = 32768,
timeout: int = 1200,
max_tries: int = 5,
time_sleep: float = 1.0,
):
super().__init__(tokenizer_path, context_max_length, url, api_key,
temperature, max_new_tokens, timeout, max_tries, time_sleep)
self.headers = {
'api-key': self.api_key,
'Content-Type': 'application/json'
}
@model_query_decorator
def query(self, processed_prompt: str) -> Tuple[str, Optional[str]]:
"""Query LLM model - only handle Gemini specific logic"""
# prepare payload
payload = json.dumps({
"contents": [
{
"role": "user",
"parts": [
{
"text": processed_prompt
}
]
}
],
"generationConfig": {
"maxOutputTokens": self.max_new_tokens,
"temperature": self.temperature,
"thinkingConfig": {
"thinkingBudget": -1 # enable auto thinking
}
}
})
# send request
response = requests.request("POST", self.url, headers=self.headers, data=payload).json()
# extract result
return response["candidates"][0]["content"]["parts"][0]["text"], None
class ModelManagerGemini25FlashNonthinking(ModelManagerBase):
"""Gemini 2.5 Flash nonthinking model manager"""
def __init__(
self,
tokenizer_path: str = "model/Tokenizers/gemini",
context_max_length: int = 1000000, # 1M
url: str = "https://runway.devops.rednote.life/openai/google/v1:generateContent",
api_key: str = "66c251052f44452a834ce83d0c7fd3ba",
temperature: float = 1.0, # default 1.0
max_new_tokens: int = 1024,
timeout: int = 1200,
max_tries: int = 5,
time_sleep: float = 1.0,
):
super().__init__(tokenizer_path, context_max_length, url, api_key,
temperature, max_new_tokens, timeout, max_tries, time_sleep)
self.headers = {
'api-key': self.api_key,
'Content-Type': 'application/json'
}
@model_query_decorator
def query(self, processed_prompt: str) -> Tuple[str, Optional[str]]:
"""Query LLM model - only handle Gemini specific logic"""
# prepare payload
payload = json.dumps({
"contents": [
{
"role": "user",
"parts": [
{
"text": processed_prompt
}
]
}
],
"generationConfig": {
"maxOutputTokens": self.max_new_tokens,
"temperature": self.temperature,
"thinkingConfig": {
"thinkingBudget": 0 # disable thinking
}
}
})
# send request
response = requests.request("POST", self.url, headers=self.headers, data=payload).json()
# extract result
return response["candidates"][0]["content"]["parts"][0]["text"], None
class ModelManagerGPT5(ModelManagerBase):
"""GPT5 model manager"""
def __init__(
self,
tokenizer_path: str = "model/Tokenizers/gpt",
context_max_length: int = 262144, # 256k
url: str = "https://runway.devops.rednote.life/openai/chat/completions?api-version=2025-01-01-preview",
api_key: str = "9a7403aa383e4a44a8c0f852710630e0",
temperature: float = 1.0, # only support 1.0
max_new_tokens: int = 32768,
timeout: int = 1200,
max_tries: int = 5,
time_sleep: float = 1.0,
):
super().__init__(tokenizer_path, context_max_length, url, api_key,
temperature, max_new_tokens, timeout, max_tries, time_sleep)
self.headers = {
'api-key': self.api_key,
'Content-Type': 'application/json'
}
@model_query_decorator
def query(self, processed_prompt: str) -> Tuple[str, Optional[str]]:
"""Query LLM model - only handle GPT5 specific logic"""
payload = json.dumps({
"messages":[
{
"role": "user",
"content": [
{
"type": "text",
"text": processed_prompt
}
]
}
],
"max_completion_tokens": self.max_new_tokens,
"temperature": self.temperature,
})
# send request
response = requests.request("POST", self.url, headers=self.headers, data=payload).json()
# extract answer
return response["choices"][0]["message"]["content"], None
class ModelManagerGPT4o(ModelManagerBase):
"""GPT4o model manager"""
def __init__(
self,
tokenizer_path: str = "model/Tokenizers/gpt",
context_max_length: int = 120000, # 128k - 8k
url: str = "https://runway.devops.rednote.life/openai/chat/completions?api-version=2025-01-01-preview",
api_key: str = "9d876c24a1d74e218e69339258db13a3",
temperature: float = 1.0,
max_new_tokens: int = 7168,
timeout: int = 1200,
max_tries: int = 5,
time_sleep: float = 1.0,
):
super().__init__(tokenizer_path, context_max_length, url, api_key,
temperature, max_new_tokens, timeout, max_tries, time_sleep)
self.headers = {
'api-key': self.api_key,
'Content-Type': 'application/json'
}
@model_query_decorator
def query(self, processed_prompt: str) -> Tuple[str, Optional[str]]:
"""Query LLM model - only handle GPT4o specific logic"""
payload = json.dumps({
"messages":[
{
"role": "user",
"content": [
{
"type": "text",
"text": processed_prompt
}
]
}
],
"max_tokens": self.max_new_tokens,
"temperature": self.temperature,
})
# send request
response = requests.request("POST", self.url, headers=self.headers, data=payload).json()
# extract answer
return response["choices"][0]["message"]["content"], None
class ModelManagerClaude4(ModelManagerBase):
"""Claude 4 thinking model manager"""
def __init__(
self,
tokenizer_path: str = "model/Tokenizers/claude",
context_max_length: int = 1000000, # 1M
url: str = "https://runway.devops.rednote.life/openai/bedrock_runtime/model/invoke",
api_key: str = "899efa27c7c74654bb561242e1a0e423",
temperature: float = 1.0, # only support 1.0
max_new_tokens: int = 32768,
timeout: int = 1200,
max_tries: int = 5,
time_sleep: float = 1.0,
):
super().__init__(tokenizer_path, context_max_length, url, api_key,
temperature, max_new_tokens, timeout, max_tries, time_sleep)
self.headers = {
'token': self.api_key,
'Content-Type': 'application/json'
}
@model_query_decorator
def query(self, processed_prompt: str) -> Tuple[str, Optional[str]]:
"""Query LLM model - only handle Claude4 specific logic"""
payload = json.dumps({
"anthropic_version": "bedrock-2023-05-31",
"max_tokens": self.max_new_tokens,
"temperature": self.temperature,
"anthropic_beta": ["context-1m-2025-08-07"], # support 1M context
"thinking": {
"type": "enabled",
"budget_tokens": self.max_new_tokens - 1024
},
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": processed_prompt
}
]
}
]
})
# send request
response = requests.post(self.url, headers=self.headers, data=payload).json()
# extract answer
return response["content"][1]["text"], response["content"][0]["thinking"]
class ModelManagerClaude4Nonthinking(ModelManagerBase):
"""Claude 4 nonthinking model manager"""
def __init__(
self,
tokenizer_path: str = "model/Tokenizers/claude",
context_max_length: int = 1000000, # 1M
url: str = "https://runway.devops.rednote.life/openai/bedrock_runtime/model/invoke",
api_key: str = "899efa27c7c74654bb561242e1a0e423",
temperature: float = 1.0, # only support 1.0
max_new_tokens: int = 1024,
timeout: int = 1200,
max_tries: int = 5,
time_sleep: float = 1.0,
):
super().__init__(tokenizer_path, context_max_length, url, api_key,
temperature, max_new_tokens, timeout, max_tries, time_sleep)
self.headers = {
'token': self.api_key,
'Content-Type': 'application/json'
}
@model_query_decorator
def query(self, processed_prompt: str) -> Tuple[str, Optional[str]]:
"""Query LLM model - only handle Claude4 specific logic"""
payload = json.dumps({
"anthropic_version": "bedrock-2023-05-31",
"max_tokens": self.max_new_tokens,
"temperature": self.temperature,
"anthropic_beta": ["context-1m-2025-08-07"], # support 1M context
"thinking": {
"type": "disabled",
},
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": processed_prompt
}
]
}
]
})
# send request
response = requests.post(self.url, headers=self.headers, data=payload).json()
# extract answer
return response["content"][0]["text"], None
class ModelManagerClaude37(ModelManagerBase):
"""Claude 3.7 thinking model manager"""
def __init__(
self,
tokenizer_path: str = "model/Tokenizers/claude",
context_max_length: int = 200000,
url: str = "https://runway.devops.rednote.life/openai/bedrock_runtime/model/invoke",
api_key: str = "ff15724dce4d4c1e95939efd2f40628f",
temperature: float = 1.0, # only support 1.0
max_new_tokens: int = 32768,
timeout: int = 1200,
max_tries: int = 5,
time_sleep: float = 1.0,
):
super().__init__(tokenizer_path, context_max_length, url, api_key,
temperature, max_new_tokens, timeout, max_tries, time_sleep)
self.headers = {
'token': self.api_key,
'Content-Type': 'application/json'
}
@model_query_decorator
def query(self, processed_prompt: str) -> Tuple[str, Optional[str]]:
"""Query LLM model - only handle Claude4 specific logic"""
payload = json.dumps({
"anthropic_version": "bedrock-2023-05-31",
"max_tokens": self.max_new_tokens,
"temperature": self.temperature,
"thinking": {
"type": "enabled",
"budget_tokens": self.max_new_tokens - 200
},
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": processed_prompt
}
]
}
]
})
# send request
response = requests.post(self.url, headers=self.headers, data=payload).json()
# extract answer
return response["content"][1]["text"], response["content"][0]["thinking"]
class ModelManagerClaude37Nonthinking(ModelManagerBase):
"""Claude 3.7 nonthinking model manager"""
def __init__(
self,
tokenizer_path: str = "model/Tokenizers/claude",
context_max_length: int = 200000,
url: str = "https://runway.devops.rednote.life/openai/bedrock_runtime/model/invoke",
api_key: str = "ff15724dce4d4c1e95939efd2f40628f",
temperature: float = 1.0, # only support 1.0
max_new_tokens: int = 1024,
timeout: int = 1200,
max_tries: int = 5,
time_sleep: float = 1.0,
):
super().__init__(tokenizer_path, context_max_length, url, api_key,
temperature, max_new_tokens, timeout, max_tries, time_sleep)
self.headers = {
'token': self.api_key,
'Content-Type': 'application/json'
}
@model_query_decorator
def query(self, processed_prompt: str) -> Tuple[str, Optional[str]]:
"""Query LLM model - only handle Claude4 specific logic"""
payload = json.dumps({
"anthropic_version": "bedrock-2023-05-31",
"max_tokens": self.max_new_tokens,
"temperature": self.temperature,
"thinking": {
"type": "disabled",
},
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": processed_prompt
}
]
}
]
})
# send request
response = requests.post(self.url, headers=self.headers, data=payload).json()
# extract answer
return response["content"][0]["text"], None
class ModelManagerKimi(ModelManagerBase):
"""Kimi model manager"""
def __init__(
self,
tokenizer_path: str = "/cpfs/user/chengfeng/huggingface/models/moonshotai/Kimi-K2-Instruct",
context_max_length: int = 224000, # 256k - 32k
url: str = "https://runway.devops.xiaohongshu.com/openai/moonshot/v1/chat/completions",
api_key: str = "ea70f961e2e94024b0e8a2037ae9b477",
temperature: float = 0.6,
max_new_tokens: int = 32768,
timeout: int = 1200,
max_tries: int = 5,
time_sleep: float = 1.0,
):
super().__init__(tokenizer_path, context_max_length, url, api_key,
temperature, max_new_tokens, timeout, max_tries, time_sleep)
self.headers = {
'api-key': self.api_key,
'Content-Type': 'application/json'
}
@model_query_decorator
def query(self, processed_prompt: str) -> Tuple[str, Optional[str]]:
"""Query LLM model - only handle Kimi specific logic"""
payload = json.dumps({
"model": "kimi-k2-0905-preview",
"messages":[
{
"role": "user",
"content": [
{
"type": "text",
"text": processed_prompt
}
]
}
],
"max_tokens": self.max_new_tokens,
"temperature": self.temperature,
"timeout": self.timeout
})
# send request
response = requests.post(self.url, headers=self.headers, data=payload).json()
# extract answer
return response["choices"][0]["message"]["content"], None
if __name__ == "__main__":
model_manager = ModelManagerGemini3()
answer, thinking = model_manager.query("Hello, how are you?")
print("Answer:", answer)
print("Thinking:", thinking)