import requests import time import json from tqdm import tqdm from datasets import Dataset def fetch_perl_modules_from_release(pages=100, delay=0.3): module_names = set() for page in tqdm(range(pages), desc="Fetching MetaCPAN releases"): url = "https://fastapi.metacpan.org/v1/release/_search" params = { "q": "status:latest", "from": page * 100, "size": 100, "_source": ["provides", "dependency"] } try: resp = requests.get(url, params=params) resp.raise_for_status() hits = resp.json().get("hits", {}).get("hits", []) except Exception as e: print(f"❌ Error on page {page}: {e}") continue for hit in hits: source = hit.get("_source", {}) # Add modules from "provides" provides = source.get("provides", []) if isinstance(provides, list): for mod in provides: module_names.add(mod) # Add modules from "dependency" deps = source.get("dependency", []) for dep in deps: mod = dep.get("module") if mod: module_names.add(mod) time.sleep(delay) return sorted(module_names) # 🔧 Fetch and save all_perl_modules = fetch_perl_modules_from_release(pages=100) # Output in JSONL format with "text" column to match Hugging Face dataset structure with open("perl_modules_dataset.jsonl", "w") as f: for mod in all_perl_modules: json.dump({"text": mod}, f) f.write('\n') print(f"✅ Saved {len(all_perl_modules)} Perl module names to perl_modules_dataset.jsonl in Hugging Face compatible format")