update pipeline
Browse files- README.md +32 -0
- pipeline_stable_diffusion_interactdiffusion.py +122 -14
README.md
CHANGED
|
@@ -1,3 +1,35 @@
|
|
| 1 |
---
|
| 2 |
license: bsd
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: bsd
|
| 3 |
---
|
| 4 |
+
|
| 5 |
+
# InteractDiffusion Diffuser Implementation
|
| 6 |
+
|
| 7 |
+
## How to Use
|
| 8 |
+
|
| 9 |
+
```python
|
| 10 |
+
from diffusers import DiffusionPipeline
|
| 11 |
+
import torch
|
| 12 |
+
|
| 13 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
| 14 |
+
"interactdiffusion/diffusers-v1-2",
|
| 15 |
+
trust_remote_code=True,
|
| 16 |
+
variant="fp16", torch_dtype=torch.float16
|
| 17 |
+
)
|
| 18 |
+
pipeline = pipeline.to("cuda")
|
| 19 |
+
|
| 20 |
+
images = pipeline(
|
| 21 |
+
prompt="a person is feeding a cat",
|
| 22 |
+
interactdiffusion_subject_phrases=["person"],
|
| 23 |
+
interactdiffusion_object_phrases=["cat"],
|
| 24 |
+
interactdiffusion_action_phrases=["feeding"],
|
| 25 |
+
interactdiffusion_subject_boxes=[[0.0332, 0.1660, 0.3359, 0.7305]],
|
| 26 |
+
interactdiffusion_object_boxes=[[0.2891, 0.4766, 0.6680, 0.7930]],
|
| 27 |
+
interactdiffusion_scheduled_sampling_beta=1,
|
| 28 |
+
output_type="pil",
|
| 29 |
+
num_inference_steps=50,
|
| 30 |
+
).images
|
| 31 |
+
|
| 32 |
+
images[0].save('out.jpg')
|
| 33 |
+
```
|
| 34 |
+
|
| 35 |
+
For more information, please check the project homepage:
|
pipeline_stable_diffusion_interactdiffusion.py
CHANGED
|
@@ -26,6 +26,7 @@ from diffusers.image_processor import VaeImageProcessor
|
|
| 26 |
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin
|
| 27 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 28 |
from diffusers.models.attention import GatedSelfAttentionDense
|
|
|
|
| 29 |
from diffusers.models.embeddings import get_fourier_embeds_from_boundingbox
|
| 30 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 31 |
from diffusers.schedulers import KarrasDiffusionSchedulers
|
|
@@ -38,7 +39,7 @@ from diffusers.utils import (
|
|
| 38 |
unscale_lora_layers,
|
| 39 |
)
|
| 40 |
from diffusers.utils.torch_utils import randn_tensor
|
| 41 |
-
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 42 |
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
|
| 43 |
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
| 44 |
|
|
@@ -46,7 +47,7 @@ from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionS
|
|
| 46 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 47 |
|
| 48 |
|
| 49 |
-
class StableDiffusionInteractDiffusionPipeline(DiffusionPipeline
|
| 50 |
r"""
|
| 51 |
Pipeline for text-to-image generation using Stable Diffusion with Interaction-to-Image Generation (InteractDiffusion).
|
| 52 |
|
|
@@ -105,17 +106,6 @@ class StableDiffusionInteractDiffusionPipeline(DiffusionPipeline, StableDiffusio
|
|
| 105 |
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
| 106 |
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
| 107 |
)
|
| 108 |
-
|
| 109 |
-
# # load position_net
|
| 110 |
-
# positive_len = 768
|
| 111 |
-
# if isinstance(unet.config.cross_attention_dim, int):
|
| 112 |
-
# positive_len = unet.config.cross_attention_dim
|
| 113 |
-
# elif isinstance(unet.config.cross_attention_dim, tuple) or isinstance(unet.config.cross_attention_dim, list):
|
| 114 |
-
# positive_len = unet.config.cross_attention_dim[0]
|
| 115 |
-
|
| 116 |
-
# self.position_net = InteractDiffusionInteractionProjection(
|
| 117 |
-
# in_dim=positive_len, out_dim=unet.config.cross_attention_dim
|
| 118 |
-
# )
|
| 119 |
|
| 120 |
self.register_modules(
|
| 121 |
vae=vae,
|
|
@@ -130,6 +120,125 @@ class StableDiffusionInteractDiffusionPipeline(DiffusionPipeline, StableDiffusio
|
|
| 130 |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
|
| 131 |
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
| 132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
| 134 |
def _encode_prompt(
|
| 135 |
self,
|
|
@@ -464,7 +573,6 @@ class StableDiffusionInteractDiffusionPipeline(DiffusionPipeline, StableDiffusio
|
|
| 464 |
module.enabled = enabled
|
| 465 |
|
| 466 |
@torch.no_grad()
|
| 467 |
-
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
| 468 |
def __call__(
|
| 469 |
self,
|
| 470 |
prompt: Union[str, List[str]] = None,
|
|
|
|
| 26 |
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin
|
| 27 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 28 |
from diffusers.models.attention import GatedSelfAttentionDense
|
| 29 |
+
from diffusers.models.attention_processor import FusedAttnProcessor2_0
|
| 30 |
from diffusers.models.embeddings import get_fourier_embeds_from_boundingbox
|
| 31 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 32 |
from diffusers.schedulers import KarrasDiffusionSchedulers
|
|
|
|
| 39 |
unscale_lora_layers,
|
| 40 |
)
|
| 41 |
from diffusers.utils.torch_utils import randn_tensor
|
| 42 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 43 |
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
|
| 44 |
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
| 45 |
|
|
|
|
| 47 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 48 |
|
| 49 |
|
| 50 |
+
class StableDiffusionInteractDiffusionPipeline(DiffusionPipeline):
|
| 51 |
r"""
|
| 52 |
Pipeline for text-to-image generation using Stable Diffusion with Interaction-to-Image Generation (InteractDiffusion).
|
| 53 |
|
|
|
|
| 106 |
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
| 107 |
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
| 108 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
self.register_modules(
|
| 111 |
vae=vae,
|
|
|
|
| 120 |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
|
| 121 |
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
| 122 |
|
| 123 |
+
### Backward compability with pre diffusers-0.27.0, which this class cannot inherit StableDiffusionMixin class
|
| 124 |
+
def enable_vae_slicing(self):
|
| 125 |
+
r"""
|
| 126 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
| 127 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
| 128 |
+
"""
|
| 129 |
+
self.vae.enable_slicing()
|
| 130 |
+
|
| 131 |
+
def disable_vae_slicing(self):
|
| 132 |
+
r"""
|
| 133 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
| 134 |
+
computing decoding in one step.
|
| 135 |
+
"""
|
| 136 |
+
self.vae.disable_slicing()
|
| 137 |
+
|
| 138 |
+
def enable_vae_tiling(self):
|
| 139 |
+
r"""
|
| 140 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
| 141 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
| 142 |
+
processing larger images.
|
| 143 |
+
"""
|
| 144 |
+
self.vae.enable_tiling()
|
| 145 |
+
|
| 146 |
+
def disable_vae_tiling(self):
|
| 147 |
+
r"""
|
| 148 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
| 149 |
+
computing decoding in one step.
|
| 150 |
+
"""
|
| 151 |
+
self.vae.disable_tiling()
|
| 152 |
+
|
| 153 |
+
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
| 154 |
+
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
|
| 155 |
+
|
| 156 |
+
The suffixes after the scaling factors represent the stages where they are being applied.
|
| 157 |
+
|
| 158 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
|
| 159 |
+
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
| 160 |
+
|
| 161 |
+
Args:
|
| 162 |
+
s1 (`float`):
|
| 163 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
| 164 |
+
mitigate "oversmoothing effect" in the enhanced denoising process.
|
| 165 |
+
s2 (`float`):
|
| 166 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
| 167 |
+
mitigate "oversmoothing effect" in the enhanced denoising process.
|
| 168 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
| 169 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
| 170 |
+
"""
|
| 171 |
+
if not hasattr(self, "unet"):
|
| 172 |
+
raise ValueError("The pipeline must have `unet` for using FreeU.")
|
| 173 |
+
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
|
| 174 |
+
|
| 175 |
+
def disable_freeu(self):
|
| 176 |
+
"""Disables the FreeU mechanism if enabled."""
|
| 177 |
+
self.unet.disable_freeu()
|
| 178 |
+
|
| 179 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.fuse_qkv_projections
|
| 180 |
+
def fuse_qkv_projections(self, unet: bool = True, vae: bool = True):
|
| 181 |
+
"""
|
| 182 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
|
| 183 |
+
key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
|
| 184 |
+
|
| 185 |
+
<Tip warning={true}>
|
| 186 |
+
|
| 187 |
+
This API is 🧪 experimental.
|
| 188 |
+
|
| 189 |
+
</Tip>
|
| 190 |
+
|
| 191 |
+
Args:
|
| 192 |
+
unet (`bool`, defaults to `True`): To apply fusion on the UNet.
|
| 193 |
+
vae (`bool`, defaults to `True`): To apply fusion on the VAE.
|
| 194 |
+
"""
|
| 195 |
+
self.fusing_unet = False
|
| 196 |
+
self.fusing_vae = False
|
| 197 |
+
|
| 198 |
+
if unet:
|
| 199 |
+
self.fusing_unet = True
|
| 200 |
+
self.unet.fuse_qkv_projections()
|
| 201 |
+
self.unet.set_attn_processor(FusedAttnProcessor2_0())
|
| 202 |
+
|
| 203 |
+
if vae:
|
| 204 |
+
if not isinstance(self.vae, AutoencoderKL):
|
| 205 |
+
raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.")
|
| 206 |
+
|
| 207 |
+
self.fusing_vae = True
|
| 208 |
+
self.vae.fuse_qkv_projections()
|
| 209 |
+
self.vae.set_attn_processor(FusedAttnProcessor2_0())
|
| 210 |
+
|
| 211 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.unfuse_qkv_projections
|
| 212 |
+
def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True):
|
| 213 |
+
"""Disable QKV projection fusion if enabled.
|
| 214 |
+
|
| 215 |
+
<Tip warning={true}>
|
| 216 |
+
|
| 217 |
+
This API is 🧪 experimental.
|
| 218 |
+
|
| 219 |
+
</Tip>
|
| 220 |
+
|
| 221 |
+
Args:
|
| 222 |
+
unet (`bool`, defaults to `True`): To apply fusion on the UNet.
|
| 223 |
+
vae (`bool`, defaults to `True`): To apply fusion on the VAE.
|
| 224 |
+
|
| 225 |
+
"""
|
| 226 |
+
if unet:
|
| 227 |
+
if not self.fusing_unet:
|
| 228 |
+
logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.")
|
| 229 |
+
else:
|
| 230 |
+
self.unet.unfuse_qkv_projections()
|
| 231 |
+
self.fusing_unet = False
|
| 232 |
+
|
| 233 |
+
if vae:
|
| 234 |
+
if not self.fusing_vae:
|
| 235 |
+
logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.")
|
| 236 |
+
else:
|
| 237 |
+
self.vae.unfuse_qkv_projections()
|
| 238 |
+
self.fusing_vae = False
|
| 239 |
+
|
| 240 |
+
### end of the section
|
| 241 |
+
|
| 242 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
| 243 |
def _encode_prompt(
|
| 244 |
self,
|
|
|
|
| 573 |
module.enabled = enabled
|
| 574 |
|
| 575 |
@torch.no_grad()
|
|
|
|
| 576 |
def __call__(
|
| 577 |
self,
|
| 578 |
prompt: Union[str, List[str]] = None,
|