izaskunmz
commited on
Commit
路
0ca28df
1
Parent(s):
e3f6520
processed video with analysis
Browse files- .gitignore +1 -1
- predict.py +16 -8
- validate.py +3 -3
.gitignore
CHANGED
|
@@ -34,7 +34,7 @@ weights/
|
|
| 34 |
*.ckpt
|
| 35 |
|
| 36 |
# Ignorar dataset original de COCO para evitar archivos innecesarios
|
| 37 |
-
datasets/
|
| 38 |
download-coco.py
|
| 39 |
|
| 40 |
# Ignorar archivos con la terminaci贸n .Zone.Identifier (propio de Windows)
|
|
|
|
| 34 |
*.ckpt
|
| 35 |
|
| 36 |
# Ignorar dataset original de COCO para evitar archivos innecesarios
|
| 37 |
+
datasets/
|
| 38 |
download-coco.py
|
| 39 |
|
| 40 |
# Ignorar archivos con la terminaci贸n .Zone.Identifier (propio de Windows)
|
predict.py
CHANGED
|
@@ -2,12 +2,22 @@ import cv2
|
|
| 2 |
from ultralytics import YOLO
|
| 3 |
|
| 4 |
# Cargar modelo YOLOv8 entrenado
|
| 5 |
-
model = YOLO("/home/izaskunmz/yolo/yolov8-object-detection/runs/detect/
|
| 6 |
|
| 7 |
# Abrir v铆deo
|
| 8 |
video_path = "/home/izaskunmz/yolo/yolov8-object-detection/raw-video/ny-traffic.mp4"
|
| 9 |
cap = cv2.VideoCapture(video_path)
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
while cap.isOpened():
|
| 12 |
ret, frame = cap.read()
|
| 13 |
if not ret:
|
|
@@ -16,13 +26,11 @@ while cap.isOpened():
|
|
| 16 |
# Realizar detecci贸n en el frame
|
| 17 |
results = model(frame)
|
| 18 |
|
| 19 |
-
#
|
| 20 |
-
annotated_frame = results[0].plot()
|
| 21 |
-
cv2.imshow("YOLOv8 Detecci贸n", annotated_frame)
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
|
| 25 |
-
break
|
| 26 |
|
| 27 |
cap.release()
|
| 28 |
-
|
|
|
|
| 2 |
from ultralytics import YOLO
|
| 3 |
|
| 4 |
# Cargar modelo YOLOv8 entrenado
|
| 5 |
+
model = YOLO("/home/izaskunmz/yolo/yolov8-object-detection/runs/detect/train_coco8/weights/best.pt")
|
| 6 |
|
| 7 |
# Abrir v铆deo
|
| 8 |
video_path = "/home/izaskunmz/yolo/yolov8-object-detection/raw-video/ny-traffic.mp4"
|
| 9 |
cap = cv2.VideoCapture(video_path)
|
| 10 |
|
| 11 |
+
# Obtener dimensiones del video original
|
| 12 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 13 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 14 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 15 |
+
|
| 16 |
+
# Definir el codec y crear el VideoWriter para guardar el resultado
|
| 17 |
+
output_path = "/home/izaskunmz/yolo/yolov8-object-detection/processed-video/ny-traffic-processed.mp4"
|
| 18 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec para formato MP4
|
| 19 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
| 20 |
+
|
| 21 |
while cap.isOpened():
|
| 22 |
ret, frame = cap.read()
|
| 23 |
if not ret:
|
|
|
|
| 26 |
# Realizar detecci贸n en el frame
|
| 27 |
results = model(frame)
|
| 28 |
|
| 29 |
+
# Obtener frame con anotaciones
|
| 30 |
+
annotated_frame = results[0].plot()
|
|
|
|
| 31 |
|
| 32 |
+
# Guardar el frame en el video de salida
|
| 33 |
+
out.write(annotated_frame)
|
|
|
|
| 34 |
|
| 35 |
cap.release()
|
| 36 |
+
out.release() # Liberar el escritor de video
|
validate.py
CHANGED
|
@@ -1,13 +1,13 @@
|
|
| 1 |
from ultralytics import YOLO
|
| 2 |
|
| 3 |
# Cargar el modelo entrenado
|
| 4 |
-
model = YOLO("/home/izaskunmz/yolo/yolov8-object-detection/runs/detect/
|
| 5 |
|
| 6 |
# Validar el modelo y guardar los resultados en la carpeta correcta
|
| 7 |
metrics = model.val(
|
| 8 |
-
data="/home/izaskunmz/yolo/yolov8-object-detection/datasets/
|
| 9 |
project="/home/izaskunmz/yolo/yolov8-object-detection/runs/val", # Define la carpeta donde se guardar谩n los resultados
|
| 10 |
-
name="
|
| 11 |
exist_ok=True # Evita sobreescribir, crear谩 nuevas versiones numeradas
|
| 12 |
)
|
| 13 |
|
|
|
|
| 1 |
from ultralytics import YOLO
|
| 2 |
|
| 3 |
# Cargar el modelo entrenado
|
| 4 |
+
model = YOLO("/home/izaskunmz/yolo/yolov8-object-detection/runs/detect/train_coco8/weights/best.pt") # Aseg煤rate de que esta ruta sea correcta
|
| 5 |
|
| 6 |
# Validar el modelo y guardar los resultados en la carpeta correcta
|
| 7 |
metrics = model.val(
|
| 8 |
+
data="/home/izaskunmz/yolo/yolov8-object-detection/datasets/coco8/data.yaml",
|
| 9 |
project="/home/izaskunmz/yolo/yolov8-object-detection/runs/val", # Define la carpeta donde se guardar谩n los resultados
|
| 10 |
+
name="val_coco8", # Nombre del experimento
|
| 11 |
exist_ok=True # Evita sobreescribir, crear谩 nuevas versiones numeradas
|
| 12 |
)
|
| 13 |
|