File size: 12,112 Bytes
b3fc8d0 9cdae5b b3fc8d0 9cdae5b b6cfd37 9cdae5b b3fc8d0 9cdae5b b3fc8d0 9cdae5b b3fc8d0 9cdae5b b3fc8d0 9cdae5b b3fc8d0 9cdae5b b3fc8d0 9cdae5b b3fc8d0 9cdae5b b3fc8d0 9cdae5b b3fc8d0 9cdae5b b3fc8d0 9cdae5b b3fc8d0 9cdae5b b3fc8d0 9cdae5b b3fc8d0 9cdae5b b3fc8d0 9cdae5b b3fc8d0 9cdae5b b3fc8d0 9cdae5b b3fc8d0 9cdae5b b3fc8d0 9cdae5b b3fc8d0 9cdae5b b3fc8d0 9cdae5b b3fc8d0 9cdae5b b3fc8d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import os
import json
import numpy as np
from PIL import Image
from pathlib import Path
import shutil
from PIL import Image, ImageFont, ImageDraw
import cv2 as cv
import os
import shutil
from pathlib import Path
import os
import json
def get_data_and_annots():
"""
Load image file paths and their corresponding annotations from the PubLayNet dataset.
Returns:
images (dict): A dictionary where keys are image IDs and values are dictionaries
data (dict): The entire JSON data loaded from the annotations file
"""
images = {}
with open('data/raw/label/publaynet/train.json') as t:
data = json.load(t)
for train_images in os.walk('data/raw/train/publaynet/train'):
train_imgs = train_images[2]
for image in data['images']:
if image['file_name'] in train_imgs:
images[image['id']] = {'file_name': "data/raw/train/publaynet/train/" + image['file_name'], 'annotations': []}
if len(images) == 100000:
break
for ann in data['annotations']:
if ann['image_id'] in images.keys():
images[ann['image_id']]['annotations'].append(ann)
return images, data
def write_file(image_id, inside, filename, content, check_set):
"""
Writes content to a file
Inputs:
image_id (str): The ID of the image.
inside (bool): Flag to determine if content should be appended or overwritten.
filename (str): The path to the file.
content (str): The content to write to the file.
check_set (set): A set to keep track of image IDs
Returns:
"""
if inside:
with open(filename, "a") as file:
file.write("\n")
file.write(content)
else:
check_set.add(image_id)
with open(filename, "w") as file:
file.write(content)
def get_bb_shape(bboxe, img):
"""
Calculates the shape of the bounding box in the image.
Inputs:
bboxe (list): Bounding box coordinates [x, y, width, height].
img (numpy.ndarray): The image array.
Returns:
tuple: The shape (height, width) of the bounding box
"""
tleft = (bboxe[0], bboxe[1])
tright = (bboxe[0] + bboxe[2], bboxe[1])
bleft = (bboxe[0], bboxe[1] + bboxe[3])
bright = (bboxe[0] + bboxe[2], bboxe[1] + bboxe[3])
top_left_x = min([tleft[0], tright[0], bleft[0], bright[0]])
top_left_y = min([tleft[1], tright[1], bleft[1], bright[1]])
bot_right_x = max([tleft[0], tright[0], bleft[0], bright[0]])
bot_right_y = max([tleft[1], tright[1], bleft[1], bright[1]])
image = img[int(top_left_y):int(bot_right_y) + 1, int(top_left_x):int(bot_right_x) + 1]
return image.shape[:2]
def coco_to_yolo(x1, y1, w, h, image_w, image_h):
"""
Converts COCO format bounding box to YOLO format.
Inputs:
x1 (float): Top-left x coordinate.
y1 (float): Top-left y coordinate.
w (float): Width of the bounding box.
h (float): Height of the bounding box.
image_w (int): Width of the image.
image_h (int): Height of the image.
Returns:
list: YOLO format bounding box [x_center, y_center, width, height]
"""
return [((2 * x1 + w) / (2 * image_w)), ((2 * y1 + h) / (2 * image_h)), w / image_w, h / image_h]
def create_directory(path):
"""
Creates a directory, deleting it first if it already exists.
Inputs:
path (str): The path to the directory
"""
dirpath = Path(path)
if dirpath.exists() and dirpath.is_dir():
shutil.rmtree(dirpath)
os.mkdir(dirpath)
def generate_yolo_labels(images):
"""
Generates YOLO format labels from the given images and annotations.
Inputs:
images (dict): Dictionary containing image data and annotations
"""
check_set = set()
create_directory(os.getcwd() + '/data/processed/yolo')
for key in images:
image_id = ','.join(map(str, [image_id['image_id'] for image_id in images[key]['annotations']]))
category_id = ''.join(map(str, [cat_id['category_id'] - 1 for cat_id in images[key]['annotations']]))
bbox = [bbox['bbox'] for bbox in images[key]['annotations']]
image_path = images[key]['file_name']
filename = os.getcwd() + '/data/processed/yolo/' + image_path.split('/')[-1].split(".")[0] + '.txt'
for index, b in enumerate(bbox):
bbox = [b[0], b[1], b[2], b[3]]
shape = get_bb_shape(bbox, cv.imread(image_path))
yolo_bbox = coco_to_yolo(bbox[0], bbox[1], shape[1], shape[0], cv.imread(image_path).shape[1], cv.imread(image_path).shape[0])
content = category_id[index] + ' ' + str(yolo_bbox[0]) + ' ' + str(yolo_bbox[1]) + ' ' + str(yolo_bbox[2]) + ' ' + str(yolo_bbox[3])
if image_id in check_set:
write_file(image_id, True, filename, content, check_set)
else:
write_file(image_id, False, filename, content, check_set)
def delete_additional_images(old_train_path, temp_images_path, yolo_path):
"""
Delete additional images that don't have corresponding YOLO labels.
This function moves images from the old training path to a temporary path
if they have corresponding YOLO label files.
Inputs:
old_train_path (str): Path to the original training images.
temp_images_path (str): Path to store the temporary images.
yolo_path (str): Path to the YOLO label files.
Returns:
"""
train = next(os.walk(old_train_path), (None, None, []))[2]
label = next(os.walk(yolo_path), (None, None, []))[2]
dirpath = Path(temp_images_path)
if dirpath.exists() and dirpath.is_dir():
shutil.rmtree(dirpath)
os.mkdir(dirpath)
for img in train:
splited = img.split(".")[0]
txt = f"{splited}.txt"
if txt in label:
shutil.move(f"{old_train_path}/{img}", f"{temp_images_path}/{img}")
def split_data(temp_images_path):
"""
Split the dataset into training and validation sets.
This function splits the images in the temporary path into training (90%)
and validation (10%) sets, and moves them to their respective directories.
Inputs:
temp_images_path (str): Path to the temporary images.
Returns:
list: List of validation image names without file extensions
"""
image = next(os.walk(temp_images_path), (None, None, []))[2]
train = image[int(len(image) * .1) : int(len(image) * .90)]
validation = list(set(image) - set(train))
create_directory(os.getcwd() + '/data/processed/training')
create_directory(os.getcwd() + '/data/processed/validation')
create_directory(os.getcwd() + '/data/processed/training/images/')
create_directory(os.getcwd() + '/data/processed/validation/images/')
for train_img in train:
shutil.move(f'{temp_images_path}/{train_img}', os.getcwd() + '/data/processed/training/images/')
for valid_img in validation:
shutil.move(f'{temp_images_path}/{valid_img}', os.getcwd() + '/data/processed/validation/images/')
validation_without_ext = [i.split('.')[0] for i in validation]
return validation_without_ext
def create_directory(path):
"""
Create a new directory, removing it first if it already exists.
Inputs:
path (str): Path to the directory to be created.
Returns:
"""
dirpath = Path(path)
if dirpath.exists() and dirpath.is_dir():
shutil.rmtree(dirpath)
os.mkdir(dirpath)
def get_labels(yolo_path, valid_without_extension):
"""
Move YOLO label files to their respective training and validation directories.
Inputs:
yolo_path (str): Path to the YOLO label files.
valid_without_extension (list): List of validation image names without file extensions.
Returns:
"""
create_directory(os.getcwd() + '/data/processed/training/labels')
create_directory(os.getcwd() + '/data/processed/validation/labels')
label = next(os.walk(yolo_path), (None, None, []))[2]
for lab in label:
split = lab.split(".")[0]
if split in valid_without_extension:
shutil.move(f"{yolo_path}/{lab}", os.getcwd() + f'/data/processed/validation/labels/{lab}')
else:
shutil.move(f"{yolo_path}/{lab}", os.getcwd() + f'/data/processed/training/labels/{lab}')
def final_preparation(old_train_path, temp_images_path, yolo_path):
"""
Perform final preparation steps for the dataset.
This function orchestrates the entire data preparation process, including
deleting additional images, splitting the data, and organizing labels.
Inputs:
old_train_path (str): Path to the original training images.
temp_images_path (str): Path to store the temporary images.
yolo_path (str): Path to the YOLO label files.
Returns:
"""
delete_additional_images(old_train_path, temp_images_path, yolo_path)
valid_without_extension = split_data(temp_images_path)
dirpath = Path(temp_images_path)
if dirpath.exists() and dirpath.is_dir():
shutil.rmtree(dirpath)
return get_labels(yolo_path, valid_without_extension)
def annotate_tables(directory):
"""
Annotate and crop tables from images based on YOLO labels.
This function processes images in the given directory, reads corresponding
YOLO labels, crops table regions, and saves them as separate images.
Inputs:
directory (str): Path to the directory containing images to be processed.
Returns:
"""
dirpath = Path(os.getcwd() + f'/data/processed/tables')
if dirpath.exists() and dirpath.is_dir():
shutil.rmtree(dirpath)
os.mkdir(dirpath)
for filename in os.listdir(directory):
file_path = os.path.join(directory, filename)
if os.path.isfile(file_path):
img_name = filename.split('.')[0]
print(f'\f {img_name}')
if os.path.isfile(os.getcwd() + f'/data/processed/training/images/{img_name}.jpg'):
with open(os.getcwd() + f'/data/processed/training/labels/{img_name}.txt', 'r') as f:
results = f.read()
original_image = Image.open(os.getcwd() + f'/data/processed/training/images/{img_name}.jpg')
elif os.path.isfile(os.getcwd() + f'/data/processed/validation/images/{img_name}.jpg'):
with open(os.getcwd() + f'/data/processed/validation/labels/{img_name}.txt', 'r') as f:
results = f.read()
original_image = Image.open(os.getcwd() + f'/data/processed/validation/images/{img_name}.jpg')
for r in results:
boxes = r.boxes
for box in boxes:
if box.cls == 3:
x1, y1, x2, y2 = box.xyxy[0]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
table_image = original_image.crop((x1, y1, x2, y2))
table_image.show()
table_image.save(os.getcwd() + f'/data/processed/tables/{img_name}.jpg')
break
break
if __name__ == '__main__':
images,data = get_data_and_annots()
generate_labels = generate_yolo_labels(images)
finalPrep = final_preparation(os.path.join(os.getcwd() + r'\data\raw\train\publaynet\train'),os.path.join(os.getcwd() + r"\data\processed\images"), os.getcwd() + '/data/processed/yolo',images)
annotate_tables(os.getcwd() + '/data/processed/hand_labeled_tables/hand_labeled_tables') |