Upload notebook.ipynb
Browse files- notebook.ipynb +214 -0
notebook.ipynb
ADDED
|
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {
|
| 6 |
+
"id": "NQUk3Y0WwYZ4"
|
| 7 |
+
},
|
| 8 |
+
"source": [
|
| 9 |
+
"# 🤗 x 🦾: Training SmolVLA with LeRobot Notebook\n",
|
| 10 |
+
"\n",
|
| 11 |
+
"Welcome to the **LeRobot SmolVLA training notebook**! This notebook provides a ready-to-run setup for training imitation learning policies using the [🤗 LeRobot](https://github.com/huggingface/lerobot) library.\n",
|
| 12 |
+
"\n",
|
| 13 |
+
"In this example, we train an `SmolVLA` policy using a dataset hosted on the [Hugging Face Hub](https://huggingface.co/), and optionally track training metrics with [Weights & Biases (wandb)](https://wandb.ai/).\n",
|
| 14 |
+
"\n",
|
| 15 |
+
"## ⚙️ Requirements\n",
|
| 16 |
+
"- A Hugging Face dataset repo ID containing your training data (`--dataset.repo_id=YOUR_USERNAME/YOUR_DATASET`)\n",
|
| 17 |
+
"- Optional: A [wandb](https://wandb.ai/) account if you want to enable training visualization\n",
|
| 18 |
+
"- Recommended: GPU runtime (e.g., NVIDIA A100) for faster training\n",
|
| 19 |
+
"\n",
|
| 20 |
+
"## ⏱️ Expected Training Time\n",
|
| 21 |
+
"Training with the `SmolVLA` policy for 20,000 steps typically takes **about 5 hours on an NVIDIA A100** GPU. On less powerful GPUs or CPUs, training may take significantly longer!\n",
|
| 22 |
+
"\n",
|
| 23 |
+
"## Example Output\n",
|
| 24 |
+
"Model checkpoints, logs, and training plots will be saved to the specified `--output_dir`. If `wandb` is enabled, progress will also be visualized in your wandb project dashboard.\n"
|
| 25 |
+
]
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"cell_type": "markdown",
|
| 29 |
+
"metadata": {
|
| 30 |
+
"id": "MOJyX0CnwA5m"
|
| 31 |
+
},
|
| 32 |
+
"source": [
|
| 33 |
+
"## Install conda\n",
|
| 34 |
+
"This cell uses `condacolab` to bootstrap a full Conda environment inside Google Colab.\n"
|
| 35 |
+
]
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"cell_type": "code",
|
| 39 |
+
"execution_count": null,
|
| 40 |
+
"metadata": {
|
| 41 |
+
"id": "QlKjL1X5t_zM"
|
| 42 |
+
},
|
| 43 |
+
"outputs": [],
|
| 44 |
+
"source": [
|
| 45 |
+
"!pip install -q condacolab\n",
|
| 46 |
+
"import condacolab\n",
|
| 47 |
+
"condacolab.install()"
|
| 48 |
+
]
|
| 49 |
+
},
|
| 50 |
+
{
|
| 51 |
+
"cell_type": "markdown",
|
| 52 |
+
"metadata": {
|
| 53 |
+
"id": "DxCc3CARwUjN"
|
| 54 |
+
},
|
| 55 |
+
"source": [
|
| 56 |
+
"## Install LeRobot\n",
|
| 57 |
+
"This cell clones the `lerobot` repository from Hugging Face, installs FFmpeg (version 7.1.1), and installs the package in editable mode.\n"
|
| 58 |
+
]
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"cell_type": "code",
|
| 62 |
+
"execution_count": null,
|
| 63 |
+
"metadata": {
|
| 64 |
+
"id": "dgLu7QT5tUik"
|
| 65 |
+
},
|
| 66 |
+
"outputs": [],
|
| 67 |
+
"source": [
|
| 68 |
+
"!git clone https://github.com/huggingface/lerobot.git\n",
|
| 69 |
+
"!conda install ffmpeg=7.1.1 -c conda-forge\n",
|
| 70 |
+
"!cd lerobot && pip install -e ."
|
| 71 |
+
]
|
| 72 |
+
},
|
| 73 |
+
{
|
| 74 |
+
"cell_type": "markdown",
|
| 75 |
+
"metadata": {
|
| 76 |
+
"id": "Q8Sn2wG4wldo"
|
| 77 |
+
},
|
| 78 |
+
"source": [
|
| 79 |
+
"## Weights & Biases login\n",
|
| 80 |
+
"This cell logs you into Weights & Biases (wandb) to enable experiment tracking and logging."
|
| 81 |
+
]
|
| 82 |
+
},
|
| 83 |
+
{
|
| 84 |
+
"cell_type": "code",
|
| 85 |
+
"execution_count": null,
|
| 86 |
+
"metadata": {
|
| 87 |
+
"id": "PolVM_movEvp"
|
| 88 |
+
},
|
| 89 |
+
"outputs": [],
|
| 90 |
+
"source": [
|
| 91 |
+
"!wandb login"
|
| 92 |
+
]
|
| 93 |
+
},
|
| 94 |
+
{
|
| 95 |
+
"cell_type": "markdown",
|
| 96 |
+
"metadata": {
|
| 97 |
+
"id": "zTWQAgX9xseE"
|
| 98 |
+
},
|
| 99 |
+
"source": [
|
| 100 |
+
"## Install SmolVLA dependencies"
|
| 101 |
+
]
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"cell_type": "code",
|
| 105 |
+
"execution_count": null,
|
| 106 |
+
"metadata": {
|
| 107 |
+
"id": "DiHs0BKwxseE"
|
| 108 |
+
},
|
| 109 |
+
"outputs": [],
|
| 110 |
+
"source": [
|
| 111 |
+
"!cd lerobot && pip install -e \".[smolvla]\""
|
| 112 |
+
]
|
| 113 |
+
},
|
| 114 |
+
{
|
| 115 |
+
"cell_type": "markdown",
|
| 116 |
+
"metadata": {
|
| 117 |
+
"id": "IkzTo4mNwxaC"
|
| 118 |
+
},
|
| 119 |
+
"source": [
|
| 120 |
+
"## Start training SmolVLA with LeRobot\n",
|
| 121 |
+
"\n",
|
| 122 |
+
"This cell runs the `train.py` script from the `lerobot` library to train a robot control policy. \n",
|
| 123 |
+
"\n",
|
| 124 |
+
"Make sure to adjust the following arguments to your setup:\n",
|
| 125 |
+
"\n",
|
| 126 |
+
"1. `--dataset.repo_id=YOUR_HF_USERNAME/YOUR_DATASET`: \n",
|
| 127 |
+
" Replace this with the Hugging Face Hub repo ID where your dataset is stored, e.g., `pepijn223/il_gym0`.\n",
|
| 128 |
+
"\n",
|
| 129 |
+
"2. `--batch_size=64`: means the model processes 64 training samples in parallel before doing one gradient update. Reduce this number if you have a GPU with low memory.\n",
|
| 130 |
+
"\n",
|
| 131 |
+
"3. `--output_dir=outputs/train/...`: \n",
|
| 132 |
+
" Directory where training logs and model checkpoints will be saved.\n",
|
| 133 |
+
"\n",
|
| 134 |
+
"4. `--job_name=...`: \n",
|
| 135 |
+
" A name for this training job, used for logging and Weights & Biases.\n",
|
| 136 |
+
"\n",
|
| 137 |
+
"5. `--policy.device=cuda`: \n",
|
| 138 |
+
" Use `cuda` if training on an NVIDIA GPU. Use `mps` for Apple Silicon, or `cpu` if no GPU is available.\n",
|
| 139 |
+
"\n",
|
| 140 |
+
"6. `--wandb.enable=true`: \n",
|
| 141 |
+
" Enables Weights & Biases for visualizing training progress. You must be logged in via `wandb login` before running this."
|
| 142 |
+
]
|
| 143 |
+
},
|
| 144 |
+
{
|
| 145 |
+
"cell_type": "code",
|
| 146 |
+
"execution_count": null,
|
| 147 |
+
"metadata": {
|
| 148 |
+
"id": "ZO52lcQtxseE"
|
| 149 |
+
},
|
| 150 |
+
"outputs": [],
|
| 151 |
+
"source": [
|
| 152 |
+
"!cd lerobot && python lerobot/scripts/train.py \\\n",
|
| 153 |
+
" --policy.path=lerobot/smolvla_base \\\n",
|
| 154 |
+
" --dataset.repo_id=${HF_USER}/mydataset \\\n",
|
| 155 |
+
" --batch_size=64 \\\n",
|
| 156 |
+
" --steps=20000 \\\n",
|
| 157 |
+
" --output_dir=outputs/train/my_smolvla \\\n",
|
| 158 |
+
" --job_name=my_smolvla_training \\\n",
|
| 159 |
+
" --policy.device=cuda \\\n",
|
| 160 |
+
" --wandb.enable=true"
|
| 161 |
+
]
|
| 162 |
+
},
|
| 163 |
+
{
|
| 164 |
+
"cell_type": "markdown",
|
| 165 |
+
"metadata": {
|
| 166 |
+
"id": "2PBu7izpxseF"
|
| 167 |
+
},
|
| 168 |
+
"source": [
|
| 169 |
+
"## Login into Hugging Face Hub\n",
|
| 170 |
+
"Now after training is done login into the Hugging Face hub and upload the last checkpoint"
|
| 171 |
+
]
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"cell_type": "code",
|
| 175 |
+
"execution_count": null,
|
| 176 |
+
"metadata": {
|
| 177 |
+
"id": "8yu5khQGIHi6"
|
| 178 |
+
},
|
| 179 |
+
"outputs": [],
|
| 180 |
+
"source": [
|
| 181 |
+
"!huggingface-cli login"
|
| 182 |
+
]
|
| 183 |
+
},
|
| 184 |
+
{
|
| 185 |
+
"cell_type": "code",
|
| 186 |
+
"execution_count": null,
|
| 187 |
+
"metadata": {
|
| 188 |
+
"id": "zFMLGuVkH7UN"
|
| 189 |
+
},
|
| 190 |
+
"outputs": [],
|
| 191 |
+
"source": [
|
| 192 |
+
"!huggingface-cli upload ${HF_USER}/my_smolvla \\\n",
|
| 193 |
+
" /content/lerobot/outputs/train/my_smolvla/checkpoints/last/pretrained_model"
|
| 194 |
+
]
|
| 195 |
+
}
|
| 196 |
+
],
|
| 197 |
+
"metadata": {
|
| 198 |
+
"accelerator": "GPU",
|
| 199 |
+
"colab": {
|
| 200 |
+
"gpuType": "A100",
|
| 201 |
+
"machine_shape": "hm",
|
| 202 |
+
"provenance": []
|
| 203 |
+
},
|
| 204 |
+
"kernelspec": {
|
| 205 |
+
"display_name": "Python 3",
|
| 206 |
+
"name": "python3"
|
| 207 |
+
},
|
| 208 |
+
"language_info": {
|
| 209 |
+
"name": "python"
|
| 210 |
+
}
|
| 211 |
+
},
|
| 212 |
+
"nbformat": 4,
|
| 213 |
+
"nbformat_minor": 0
|
| 214 |
+
}
|