File size: 28,301 Bytes
978c16e a6a87b9 978c16e 81bbc6c 978c16e 81bbc6c 978c16e e9608a0 978c16e 81bbc6c 978c16e 81bbc6c 978c16e ef2e77f 978c16e ef2e77f 6afb145 978c16e ef2e77f 6afb145 978c16e 6afb145 978c16e ef2e77f 978c16e 6afb145 978c16e 6afb145 978c16e 81bbc6c 978c16e ef2e77f 978c16e 81bbc6c 978c16e 81bbc6c 978c16e ef2e77f 81bbc6c 978c16e ef2e77f 81bbc6c ef2e77f e9608a0 ef2e77f 81bbc6c ef2e77f e9608a0 81bbc6c a6a87b9 978c16e 81bbc6c 978c16e a6a87b9 81bbc6c 978c16e 81bbc6c 978c16e ef2e77f 978c16e 81bbc6c 978c16e 81bbc6c 978c16e ef2e77f e9608a0 978c16e 81bbc6c ef2e77f 978c16e 81bbc6c 978c16e 81bbc6c 978c16e 81bbc6c 978c16e 81bbc6c ef2e77f 978c16e 81bbc6c 978c16e 81bbc6c 978c16e ef2e77f 978c16e ef2e77f 978c16e 81bbc6c 978c16e ef2e77f 978c16e 81bbc6c 978c16e e9608a0 81bbc6c e9608a0 81bbc6c e9608a0 81bbc6c e9608a0 81bbc6c e9608a0 81bbc6c e9608a0 81bbc6c e9608a0 81bbc6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 |
# coding=utf-8
# noqa: license-check
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-Apache2
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
# Copyright 2025 NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TransformerEngine-optimized ESM model.
Adapted from `modeling_esm.py` in huggingface/transformers.
"""
from typing import Literal, Optional, Unpack
# TODO: put import guard around transformer_engine here, with an informative error message around
# installation and the nvidia docker container.
import torch
import transformer_engine.pytorch
from torch import nn
from torch.nn import CrossEntropyLoss
from transformer_engine.pytorch.attention.rope import RotaryPositionEmbedding
from transformers.modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPooling,
MaskedLMOutput,
TokenClassifierOutput,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.models.esm.configuration_esm import EsmConfig
from transformers.models.esm.modeling_esm import EsmPooler
from transformers.utils import logging
from transformers.utils.generic import TransformersKwargs
logger = logging.get_logger(__name__)
# Dictionary that gets inserted into config.json to map Auto** classes to our TE-optimized model classes defined below.
# These should be prefixed with esm_nv., since we name the file esm_nv.py in our exported checkpoints.
AUTO_MAP = {
"AutoConfig": "esm_nv.NVEsmConfig",
"AutoModel": "esm_nv.NVEsmModel",
"AutoModelForMaskedLM": "esm_nv.NVEsmForMaskedLM",
"AutoModelForTokenClassification": "esm_nv.NVEsmForTokenClassification",
}
class NVEsmConfig(EsmConfig):
"""NVEsmConfig is a configuration for the NVEsm model."""
model_type: str = "nv_esm"
def __init__(
self,
qkv_weight_interleaved: bool = True,
encoder_activation: str = "gelu",
attn_input_format: Literal["bshd", "thd"] = "bshd",
fuse_qkv_params: bool = True,
micro_batch_size: Optional[int] = None,
max_seq_length: Optional[int] = None,
padded_vocab_size: Optional[int] = 64,
attn_mask_type: str = "padding",
**kwargs,
):
"""Initialize the NVEsmConfig with additional TE-related config options.
Args:
qkv_weight_interleaved: Whether to interleave the qkv weights. If set to `False`, the
QKV weight is interpreted as a concatenation of query, key, and value weights along
the `0th` dimension. The default interpretation is that the individual `q`, `k`, and
`v` weights for each attention head are interleaved. This parameter is set to `False`
when using :attr:`fuse_qkv_params=False`.
encoder_activation: The activation function to use in the encoder.
attn_input_format: The input format to use for the attention. This controls
whether the dimensions of the intermediate hidden states is 'batch first'
('bshd') or 'sequence first' ('sbhd'). `s` stands for the sequence length,
`b` batch size, `h` the number of heads, `d` head size. Note that these
formats are very closely related to the `qkv_format` in the
`MultiHeadAttention` and `DotProductAttention` modules.
fuse_qkv_params: Whether to fuse the qkv parameters. If set to `True`,
`TransformerLayer` module exposes a single fused parameter for query-key-value.
This enables optimizations such as QKV fusion without concatentations/splits and
also enables the argument `fuse_wgrad_accumulation`.
micro_batch_size: The micro batch size to use for the attention. This is needed for
JIT Warmup, a technique where jit fused functions are warmed up before training to
ensure same kernels are used for forward propogation and activation recompute phase.
max_seq_length: The maximum sequence length to use for the attention. This is needed for
JIT Warmup, a technique where jit fused functions are warmed up before training to
ensure same kernels are used for forward propogation and activation recompute phase.
padded_vocab_size: The padded vocabulary size to support FP8. If not provided, defaults
to vocab_size. Must be greater than or equal to vocab_size.
attn_mask_type: The type of attention mask to use.
**kwargs: Additional config options to pass to EsmConfig.
"""
super().__init__(**kwargs)
# Additional TE-related config options.
self.qkv_weight_interleaved = qkv_weight_interleaved
self.encoder_activation = encoder_activation
self.attn_input_format = attn_input_format
self.fuse_qkv_params = fuse_qkv_params
self.micro_batch_size = micro_batch_size
self.max_seq_length = max_seq_length
self.attn_mask_type = attn_mask_type
# Set padded_vocab_size with default fallback to vocab_size
self.padded_vocab_size = padded_vocab_size if padded_vocab_size is not None else self.vocab_size
# Ensure padded_vocab_size is at least as large as vocab_size
if self.padded_vocab_size is not None and self.vocab_size is not None:
assert self.padded_vocab_size >= self.vocab_size, (
f"padded_vocab_size ({self.padded_vocab_size}) must be greater than or equal to vocab_size ({self.vocab_size})"
)
class NVEsmEncoder(nn.Module):
"""NVEsmEncoder is a TransformerEngine-optimized ESM encoder."""
def __init__(self, config: NVEsmConfig):
"""Initialize a NVEsmEncoder.
Args:
config (NVEsmConfig): The configuration of the model.
"""
super().__init__()
self.config = config
self.layers = nn.ModuleList(
[
transformer_engine.pytorch.TransformerLayer(
hidden_size=config.hidden_size,
ffn_hidden_size=config.intermediate_size,
num_attention_heads=config.num_attention_heads,
layernorm_epsilon=config.layer_norm_eps,
hidden_dropout=config.hidden_dropout_prob,
attention_dropout=config.attention_probs_dropout_prob,
qkv_weight_interleaved=config.qkv_weight_interleaved,
layer_number=i + 1,
layer_type="encoder",
self_attn_mask_type=config.attn_mask_type,
activation=config.encoder_activation,
attn_input_format=config.attn_input_format,
seq_length=config.max_seq_length,
micro_batch_size=config.micro_batch_size,
num_gqa_groups=config.num_attention_heads,
fuse_qkv_params=config.fuse_qkv_params,
params_dtype=config.dtype,
window_size=(-1, -1),
)
for i in range(config.num_hidden_layers)
]
)
self.emb_layer_norm_after = transformer_engine.pytorch.LayerNorm(
config.hidden_size, eps=config.layer_norm_eps, params_dtype=config.dtype
)
if config.position_embedding_type == "rotary":
self.rotary_embeddings = RotaryPositionEmbedding(config.hidden_size // config.num_attention_heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
**kwargs: Unpack[TransformersKwargs],
):
"""Forward pass of the NVEsmEncoder.
Args:
hidden_states (torch.Tensor): The hidden states.
attention_mask (torch.Tensor): The attention mask.
**kwargs: Additional arguments, see TransformersKwargs for more details.
"""
all_hidden_states: tuple[torch.Tensor, ...] = ()
has_thd_input = [
x is not None
for x in [
kwargs.get("cu_seq_lens_q", None),
kwargs.get("cu_seq_lens_k", None),
kwargs.get("max_length_q", None),
kwargs.get("max_length_k", None),
]
]
if self.config.attn_input_format == "thd":
if not all(has_thd_input):
raise ValueError(
"cu_seq_lens_q, cu_seq_lens_k, max_length_q, and max_length_k must be provided when using THD inputs."
)
assert hidden_states.dim() == 3 and hidden_states.size(0) == 1, (
"THD expects embeddings shaped [1, total_tokens, hidden_size]."
)
hidden_states = hidden_states.squeeze(0)
attention_mask = None
elif self.config.attn_input_format == "bshd" and any(has_thd_input):
raise ValueError(
"cu_seq_lens_q, cu_seq_lens_k, max_length_q, and max_length_k are not allowed when using BSHD inputs."
)
# Ensure that rotary embeddings are computed with at a higher precision outside the torch autocast context.
with torch.autocast(device_type="cuda", enabled=False):
if self.config.position_embedding_type == "rotary":
if self.config.attn_input_format == "bshd":
te_rope_emb = self.rotary_embeddings(max_seq_len=hidden_states.shape[1])
elif self.config.attn_input_format == "thd":
te_rope_emb = self.rotary_embeddings(
max_seq_len=kwargs["cu_seq_lens_q_padded"][-1]
if "cu_seq_lens_q_padded" in kwargs
else kwargs["cu_seq_lens_q"][-1]
)
te_rope_emb = te_rope_emb.to(hidden_states.device, non_blocking=True)
for layer_module in self.layers:
if kwargs.get("output_hidden_states", False):
all_hidden_states = (*all_hidden_states, hidden_states)
hidden_states = layer_module(
hidden_states,
attention_mask,
rotary_pos_emb=te_rope_emb,
cu_seqlens_q=kwargs.get("cu_seq_lens_q", None),
cu_seqlens_kv=kwargs.get("cu_seq_lens_k", None),
cu_seqlens_q_padded=kwargs.get("cu_seq_lens_q_padded", None),
cu_seqlens_kv_padded=kwargs.get("cu_seq_lens_k_padded", None),
max_seqlen_q=kwargs.get("max_length_q", None),
max_seqlen_kv=kwargs.get("max_length_k", None),
pad_between_seqs=kwargs.get("pad_between_seqs", None),
)
hidden_states = self.emb_layer_norm_after(hidden_states)
if kwargs.get("output_hidden_states", False):
all_hidden_states = (*all_hidden_states, hidden_states)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states if all_hidden_states else None,
)
class NVEsmPreTrainedModel(PreTrainedModel):
"""An abstract class to handle weights initialization and pretrained model loading."""
config_class = NVEsmConfig
base_model_prefix = "esm"
supports_gradient_checkpointing = False
accepts_loss_kwargs = False
_no_split_modules = (
"TransformerLayer",
"EsmEmbeddings",
)
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
def _init_weights(self, module: nn.Module):
"""Initialize the weights.
Args:
module (nn.Module): The module to initialize the weights for.
"""
if isinstance(
module, (nn.Linear, transformer_engine.pytorch.Linear, transformer_engine.pytorch.LayerNormLinear)
):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
if isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if isinstance(module, (nn.LayerNorm, transformer_engine.pytorch.LayerNorm)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, transformer_engine.pytorch.LayerNormLinear):
module.layer_norm_weight.data.fill_(1.0)
if module.layer_norm_bias is not None:
module.layer_norm_bias.data.zero_()
@classmethod
def get_init_context(cls, is_quantized: bool, _is_ds_init_called: bool):
"""Override the default get_init_context method to allow for fp8 model initialization."""
return []
class NVEsmModel(NVEsmPreTrainedModel):
"""The ESM Encoder-only protein language model.
This model uses NVDIA's TransformerEngine to optimize attention layer training and inference.
"""
def __init__(self, config: NVEsmConfig, add_pooling_layer: bool = True):
"""Initialize a NVEsmModel.
Args:
config (NVEsmConfig): The configuration of the model.
add_pooling_layer (bool): Whether to add a pooling layer.
"""
super().__init__(config)
self.config = config
# Ensure pad_token_id is set properly, defaulting to 0 if not specified
if not hasattr(config, "pad_token_id") or config.pad_token_id is None:
config.pad_token_id = 0
self.embeddings = NVEsmEmbeddings(config)
self.encoder = NVEsmEncoder(config)
self.pooler = EsmPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
"""Get the input embeddings of the model."""
return self.embeddings.word_embeddings
def set_input_embeddings(self, value: torch.Tensor):
"""Set the input embeddings of the model.
Args:
value (torch.Tensor): The input embeddings.
"""
self.embeddings.word_embeddings = value
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> BaseModelOutputWithPooling:
"""Forward pass of the NVEsmModel.
Args:
input_ids (torch.Tensor): The input ids.
attention_mask (torch.Tensor): The attention mask.
position_ids (torch.Tensor): The position ids.
inputs_embeds (torch.Tensor): The input embeddings.
**kwargs: Additional arguments, see TransformersKwargs for more details.
Returns:
BaseModelOutputWithPooling: The output of the model.
"""
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length)), device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# TE expects a boolean attention mask, where 1s are masked and 0s are not masked
extended_attention_mask = extended_attention_mask < -1
embedding_output = self.embeddings(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
**kwargs,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
**kwargs,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
)
class NVEsmForMaskedLM(NVEsmPreTrainedModel):
"""NVEsmForMaskedLM is a TransformerEngine-optimized ESM model for masked language modeling."""
_tied_weights_keys = ("lm_head.decoder.weight",)
def __init__(self, config: NVEsmConfig):
"""Initialize a NVEsmForMaskedLM.
Args:
config (NVEsmConfig): The configuration of the model.
"""
super().__init__(config)
if config.is_decoder:
logger.warning(
"If you want to use `EsmForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.esm = NVEsmModel(config, add_pooling_layer=False)
self.lm_head = NVEsmLMHead(config)
self.init_weights()
self.post_init()
def get_output_embeddings(self):
"""Get the output embeddings of the model."""
return self.lm_head.decoder
def set_output_embeddings(self, new_embeddings):
"""Set the output embeddings of the model."""
self.lm_head.decoder = new_embeddings
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> MaskedLMOutput:
"""Forward pass of the NVEsmForMaskedLM.
Args:
input_ids (torch.LongTensor): The input ids.
attention_mask (torch.Tensor): The attention mask.
position_ids (torch.LongTensor): The position ids.
inputs_embeds (torch.FloatTensor): The input embeddings.
labels (torch.LongTensor): The labels.
**kwargs: Additional arguments, see TransformersKwargs for more details.
Returns:
MaskedLMOutput: The output of the model.
"""
outputs = self.esm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
**kwargs,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
# Truncate logits back to original vocab_size if padding was used
if self.config.padded_vocab_size != self.config.vocab_size:
prediction_scores = prediction_scores[..., : self.config.vocab_size]
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(
prediction_scores.view(-1, self.config.vocab_size),
labels.to(prediction_scores.device).view(-1),
)
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
)
class NVEsmLMHead(nn.Module):
"""ESM Head for masked language modeling using TransformerEngine."""
def __init__(self, config: NVEsmConfig):
"""Initialize a NVEsmLMHead.
Args:
config (NVEsmConfig): The configuration of the model.
"""
super().__init__()
self.dense = transformer_engine.pytorch.Linear(
config.hidden_size,
config.hidden_size,
params_dtype=config.dtype,
)
self.decoder = transformer_engine.pytorch.LayerNormLinear(
config.hidden_size,
config.padded_vocab_size if config.padded_vocab_size is not None else config.vocab_size,
bias=True,
eps=config.layer_norm_eps,
params_dtype=config.dtype,
)
def forward(self, features, **kwargs):
"""Forward pass of the NVEsmLMHead.
Args:
features (torch.Tensor): The features.
**kwargs: Additional arguments.
"""
x = self.dense(features)
x = torch.nn.functional.gelu(x)
x = self.decoder(x)
return x
class NVEsmEmbeddings(nn.Module):
"""Modified version of EsmEmbeddings to support THD inputs."""
def __init__(self, config):
"""Initialize a NVEsmEmbeddings."""
super().__init__()
self.word_embeddings = nn.Embedding(
config.padded_vocab_size,
config.hidden_size,
padding_idx=config.pad_token_id,
dtype=config.dtype,
)
self.layer_norm = (
transformer_engine.pytorch.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
if config.emb_layer_norm_before
else None
)
if config.position_embedding_type != "rotary":
raise ValueError(
"The TE-accelerated ESM-2 model only supports rotary position embeddings, received "
f"{config.position_embedding_type}"
)
self.padding_idx = config.pad_token_id
self.token_dropout = config.token_dropout
self.mask_token_id = config.mask_token_id
def forward(
self,
input_ids=None,
attention_mask=None,
inputs_embeds=None,
**kwargs: Unpack[TransformersKwargs],
):
"""Forward pass of the NVEsmEmbeddings."""
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
# Note that if we want to support ESM-1 (not 1b!) in future then we need to support an
# embedding_scale factor here.
embeddings = inputs_embeds
if (
kwargs.get("cu_seq_lens_q") is not None
and kwargs.get("cu_seq_lens_k") is not None
and kwargs.get("max_length_q") is not None
and kwargs.get("max_length_k") is not None
):
using_thd = True
attention_mask = None
else:
using_thd = False
# Matt: ESM has the option to handle masking in MLM in a slightly unusual way. If the token_dropout
# flag is False then it is handled in the same was as BERT/RoBERTa. If it is set to True, however,
# masked tokens are treated as if they were selected for input dropout and zeroed out.
# This "mask-dropout" is compensated for when masked tokens are not present, by scaling embeddings by
# a factor of (fraction of unmasked tokens during training) / (fraction of unmasked tokens in sample).
# This is analogous to the way that dropout layers scale down outputs during evaluation when not
# actually dropping out values (or, equivalently, scale up their un-dropped outputs in training).
if self.token_dropout and input_ids is not None:
embeddings = embeddings.masked_fill((input_ids == self.mask_token_id).unsqueeze(-1), 0.0)
mask_ratio_train = 0.15 * 0.8 # Hardcoded as the ratio used in all ESM model training runs
if not using_thd:
# BSHD token dropout correction
src_lengths = attention_mask.sum(-1) if attention_mask is not None else input_ids.shape[1]
n_masked_per_seq = (input_ids == self.mask_token_id).sum(-1).float()
mask_ratio_observed = n_masked_per_seq / src_lengths
scale_factor = (1 - mask_ratio_train) / (1 - mask_ratio_observed)
embeddings = (embeddings * scale_factor[:, None, None]).to(embeddings.dtype)
else:
src_lengths = torch.diff(kwargs["cu_seq_lens_q"])
# We need to find the number of masked tokens in each sequence in the padded batch.
is_masked = (input_ids == self.mask_token_id).squeeze(0)
n_masked_per_seq = torch.nested.nested_tensor_from_jagged(
is_masked, offsets=kwargs["cu_seq_lens_q"]
).sum(1)
mask_ratio_observed = n_masked_per_seq.float() / src_lengths
scale_factor = (1 - mask_ratio_train) / (1 - mask_ratio_observed)
reshaped_scale_factor = torch.repeat_interleave(scale_factor, src_lengths, dim=0)
embeddings = (embeddings * reshaped_scale_factor.unsqueeze(-1)).to(embeddings.dtype)
if self.layer_norm is not None:
embeddings = self.layer_norm(embeddings)
if attention_mask is not None:
embeddings = (embeddings * attention_mask.unsqueeze(-1)).to(embeddings.dtype)
return embeddings
class NVEsmForTokenClassification(NVEsmPreTrainedModel):
"""Adds a token classification head to the model.
Adapted from EsmForTokenClassification in Hugging Face Transformers `modeling_esm.py`.
"""
def __init__(self, config):
"""Initialize NVEsmForTokenClassification."""
super().__init__(config)
self.num_labels = config.num_labels
self.esm = NVEsmModel(config, add_pooling_layer=False)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = transformer_engine.pytorch.Linear(
config.hidden_size, config.num_labels, params_dtype=config.dtype
)
self.init_weights()
self.post_init()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> TokenClassifierOutput:
"""Forward pass for the token classification head.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
outputs = self.esm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
**kwargs,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(logits.device)
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|