File size: 28,301 Bytes
978c16e
a6a87b9
978c16e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81bbc6c
978c16e
 
 
 
 
 
 
 
 
 
 
 
81bbc6c
978c16e
 
 
e9608a0
978c16e
81bbc6c
978c16e
 
 
 
81bbc6c
 
 
 
 
 
 
 
 
978c16e
 
 
 
 
 
 
 
 
 
ef2e77f
978c16e
 
 
ef2e77f
6afb145
978c16e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef2e77f
 
6afb145
978c16e
 
 
 
 
 
 
 
 
 
6afb145
978c16e
ef2e77f
 
 
 
 
 
 
 
 
978c16e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6afb145
978c16e
 
 
 
 
 
6afb145
978c16e
 
 
 
 
81bbc6c
 
 
978c16e
 
ef2e77f
978c16e
 
 
 
81bbc6c
978c16e
 
 
 
 
 
81bbc6c
978c16e
ef2e77f
81bbc6c
 
 
 
 
 
 
 
 
978c16e
ef2e77f
81bbc6c
ef2e77f
 
 
 
 
 
 
e9608a0
ef2e77f
81bbc6c
 
 
 
ef2e77f
e9608a0
 
 
 
 
 
81bbc6c
 
 
 
 
 
a6a87b9
978c16e
81bbc6c
978c16e
 
 
 
 
a6a87b9
81bbc6c
 
 
 
 
 
 
978c16e
 
 
 
81bbc6c
978c16e
 
 
 
ef2e77f
978c16e
 
 
 
 
 
 
 
 
81bbc6c
978c16e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81bbc6c
 
 
 
 
978c16e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef2e77f
 
 
e9608a0
978c16e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81bbc6c
ef2e77f
978c16e
 
 
 
 
 
 
81bbc6c
978c16e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81bbc6c
978c16e
 
 
 
81bbc6c
978c16e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81bbc6c
ef2e77f
978c16e
 
 
 
 
 
 
 
81bbc6c
978c16e
 
 
 
 
 
 
 
 
81bbc6c
978c16e
 
 
 
ef2e77f
 
 
 
978c16e
 
 
ef2e77f
 
 
 
978c16e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81bbc6c
 
 
 
 
978c16e
 
 
ef2e77f
978c16e
 
81bbc6c
978c16e
 
 
 
 
 
 
 
 
 
 
 
 
e9608a0
 
 
 
 
 
 
 
 
81bbc6c
 
 
 
e9608a0
 
 
81bbc6c
 
 
e9608a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81bbc6c
e9608a0
 
 
 
 
 
 
 
 
81bbc6c
 
 
 
 
 
e9608a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81bbc6c
e9608a0
 
81bbc6c
 
 
e9608a0
 
 
 
 
 
 
 
 
 
 
 
81bbc6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
# coding=utf-8
# noqa: license-check
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-Apache2
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
# Copyright 2025 NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


"""TransformerEngine-optimized ESM model.

Adapted from `modeling_esm.py` in huggingface/transformers.
"""

from typing import Literal, Optional, Unpack

# TODO: put import guard around transformer_engine here, with an informative error message around
# installation and the nvidia docker container.
import torch
import transformer_engine.pytorch
from torch import nn
from torch.nn import CrossEntropyLoss
from transformer_engine.pytorch.attention.rope import RotaryPositionEmbedding
from transformers.modeling_outputs import (
    BaseModelOutput,
    BaseModelOutputWithPooling,
    MaskedLMOutput,
    TokenClassifierOutput,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.models.esm.configuration_esm import EsmConfig
from transformers.models.esm.modeling_esm import EsmPooler
from transformers.utils import logging
from transformers.utils.generic import TransformersKwargs


logger = logging.get_logger(__name__)

# Dictionary that gets inserted into config.json to map Auto** classes to our TE-optimized model classes defined below.
# These should be prefixed with esm_nv., since we name the file esm_nv.py in our exported checkpoints.
AUTO_MAP = {
    "AutoConfig": "esm_nv.NVEsmConfig",
    "AutoModel": "esm_nv.NVEsmModel",
    "AutoModelForMaskedLM": "esm_nv.NVEsmForMaskedLM",
    "AutoModelForTokenClassification": "esm_nv.NVEsmForTokenClassification",
}


class NVEsmConfig(EsmConfig):
    """NVEsmConfig is a configuration for the NVEsm model."""

    model_type: str = "nv_esm"

    def __init__(
        self,
        qkv_weight_interleaved: bool = True,
        encoder_activation: str = "gelu",
        attn_input_format: Literal["bshd", "thd"] = "bshd",
        fuse_qkv_params: bool = True,
        micro_batch_size: Optional[int] = None,
        max_seq_length: Optional[int] = None,
        padded_vocab_size: Optional[int] = 64,
        attn_mask_type: str = "padding",
        **kwargs,
    ):
        """Initialize the NVEsmConfig with additional TE-related config options.

        Args:
            qkv_weight_interleaved: Whether to interleave the qkv weights. If set to `False`, the
                QKV weight is interpreted as a concatenation of query, key, and value weights along
                the `0th` dimension. The default interpretation is that the individual `q`, `k`, and
                `v` weights for each attention head are interleaved. This parameter is set to `False`
                when using :attr:`fuse_qkv_params=False`.
            encoder_activation: The activation function to use in the encoder.
            attn_input_format: The input format to use for the attention. This controls
                whether the dimensions of the intermediate hidden states is 'batch first'
                ('bshd') or 'sequence first' ('sbhd'). `s` stands for the sequence length,
                `b` batch size, `h` the number of heads, `d` head size. Note that these
                formats are very closely related to the `qkv_format` in the
                `MultiHeadAttention` and `DotProductAttention` modules.
            fuse_qkv_params: Whether to fuse the qkv parameters. If set to `True`,
                `TransformerLayer` module exposes a single fused parameter for query-key-value.
                This enables optimizations such as QKV fusion without concatentations/splits and
                also enables the argument `fuse_wgrad_accumulation`.
            micro_batch_size: The micro batch size to use for the attention. This is needed for
                JIT Warmup, a technique where jit fused functions are warmed up before training to
                ensure same kernels are used for forward propogation and activation recompute phase.
            max_seq_length: The maximum sequence length to use for the attention. This is needed for
                JIT Warmup, a technique where jit fused functions are warmed up before training to
                ensure same kernels are used for forward propogation and activation recompute phase.
            padded_vocab_size: The padded vocabulary size to support FP8. If not provided, defaults
                to vocab_size. Must be greater than or equal to vocab_size.
            attn_mask_type: The type of attention mask to use.
            **kwargs: Additional config options to pass to EsmConfig.
        """
        super().__init__(**kwargs)
        # Additional TE-related config options.
        self.qkv_weight_interleaved = qkv_weight_interleaved
        self.encoder_activation = encoder_activation
        self.attn_input_format = attn_input_format
        self.fuse_qkv_params = fuse_qkv_params
        self.micro_batch_size = micro_batch_size
        self.max_seq_length = max_seq_length
        self.attn_mask_type = attn_mask_type

        # Set padded_vocab_size with default fallback to vocab_size
        self.padded_vocab_size = padded_vocab_size if padded_vocab_size is not None else self.vocab_size

        # Ensure padded_vocab_size is at least as large as vocab_size
        if self.padded_vocab_size is not None and self.vocab_size is not None:
            assert self.padded_vocab_size >= self.vocab_size, (
                f"padded_vocab_size ({self.padded_vocab_size}) must be greater than or equal to vocab_size ({self.vocab_size})"
            )


class NVEsmEncoder(nn.Module):
    """NVEsmEncoder is a TransformerEngine-optimized ESM encoder."""

    def __init__(self, config: NVEsmConfig):
        """Initialize a NVEsmEncoder.

        Args:
            config (NVEsmConfig): The configuration of the model.
        """
        super().__init__()
        self.config = config
        self.layers = nn.ModuleList(
            [
                transformer_engine.pytorch.TransformerLayer(
                    hidden_size=config.hidden_size,
                    ffn_hidden_size=config.intermediate_size,
                    num_attention_heads=config.num_attention_heads,
                    layernorm_epsilon=config.layer_norm_eps,
                    hidden_dropout=config.hidden_dropout_prob,
                    attention_dropout=config.attention_probs_dropout_prob,
                    qkv_weight_interleaved=config.qkv_weight_interleaved,
                    layer_number=i + 1,
                    layer_type="encoder",
                    self_attn_mask_type=config.attn_mask_type,
                    activation=config.encoder_activation,
                    attn_input_format=config.attn_input_format,
                    seq_length=config.max_seq_length,
                    micro_batch_size=config.micro_batch_size,
                    num_gqa_groups=config.num_attention_heads,
                    fuse_qkv_params=config.fuse_qkv_params,
                    params_dtype=config.dtype,
                    window_size=(-1, -1),
                )
                for i in range(config.num_hidden_layers)
            ]
        )
        self.emb_layer_norm_after = transformer_engine.pytorch.LayerNorm(
            config.hidden_size, eps=config.layer_norm_eps, params_dtype=config.dtype
        )
        if config.position_embedding_type == "rotary":
            self.rotary_embeddings = RotaryPositionEmbedding(config.hidden_size // config.num_attention_heads)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        **kwargs: Unpack[TransformersKwargs],
    ):
        """Forward pass of the NVEsmEncoder.

        Args:
            hidden_states (torch.Tensor): The hidden states.
            attention_mask (torch.Tensor): The attention mask.
            **kwargs: Additional arguments, see TransformersKwargs for more details.
        """
        all_hidden_states: tuple[torch.Tensor, ...] = ()
        has_thd_input = [
            x is not None
            for x in [
                kwargs.get("cu_seq_lens_q", None),
                kwargs.get("cu_seq_lens_k", None),
                kwargs.get("max_length_q", None),
                kwargs.get("max_length_k", None),
            ]
        ]

        if self.config.attn_input_format == "thd":
            if not all(has_thd_input):
                raise ValueError(
                    "cu_seq_lens_q, cu_seq_lens_k, max_length_q, and max_length_k must be provided when using THD inputs."
                )
            assert hidden_states.dim() == 3 and hidden_states.size(0) == 1, (
                "THD expects embeddings shaped [1, total_tokens, hidden_size]."
            )
            hidden_states = hidden_states.squeeze(0)
            attention_mask = None

        elif self.config.attn_input_format == "bshd" and any(has_thd_input):
            raise ValueError(
                "cu_seq_lens_q, cu_seq_lens_k, max_length_q, and max_length_k are not allowed when using BSHD inputs."
            )

        # Ensure that rotary embeddings are computed with at a higher precision outside the torch autocast context.
        with torch.autocast(device_type="cuda", enabled=False):
            if self.config.position_embedding_type == "rotary":
                if self.config.attn_input_format == "bshd":
                    te_rope_emb = self.rotary_embeddings(max_seq_len=hidden_states.shape[1])
                elif self.config.attn_input_format == "thd":
                    te_rope_emb = self.rotary_embeddings(
                        max_seq_len=kwargs["cu_seq_lens_q_padded"][-1]
                        if "cu_seq_lens_q_padded" in kwargs
                        else kwargs["cu_seq_lens_q"][-1]
                    )
            te_rope_emb = te_rope_emb.to(hidden_states.device, non_blocking=True)

        for layer_module in self.layers:
            if kwargs.get("output_hidden_states", False):
                all_hidden_states = (*all_hidden_states, hidden_states)

            hidden_states = layer_module(
                hidden_states,
                attention_mask,
                rotary_pos_emb=te_rope_emb,
                cu_seqlens_q=kwargs.get("cu_seq_lens_q", None),
                cu_seqlens_kv=kwargs.get("cu_seq_lens_k", None),
                cu_seqlens_q_padded=kwargs.get("cu_seq_lens_q_padded", None),
                cu_seqlens_kv_padded=kwargs.get("cu_seq_lens_k_padded", None),
                max_seqlen_q=kwargs.get("max_length_q", None),
                max_seqlen_kv=kwargs.get("max_length_k", None),
                pad_between_seqs=kwargs.get("pad_between_seqs", None),
            )

        hidden_states = self.emb_layer_norm_after(hidden_states)

        if kwargs.get("output_hidden_states", False):
            all_hidden_states = (*all_hidden_states, hidden_states)

        return BaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states if all_hidden_states else None,
        )


class NVEsmPreTrainedModel(PreTrainedModel):
    """An abstract class to handle weights initialization and pretrained model loading."""

    config_class = NVEsmConfig
    base_model_prefix = "esm"
    supports_gradient_checkpointing = False
    accepts_loss_kwargs = False
    _no_split_modules = (
        "TransformerLayer",
        "EsmEmbeddings",
    )

    # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
    def _init_weights(self, module: nn.Module):
        """Initialize the weights.

        Args:
            module (nn.Module): The module to initialize the weights for.
        """
        if isinstance(
            module, (nn.Linear, transformer_engine.pytorch.Linear, transformer_engine.pytorch.LayerNormLinear)
        ):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        if isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        if isinstance(module, (nn.LayerNorm, transformer_engine.pytorch.LayerNorm)):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, transformer_engine.pytorch.LayerNormLinear):
            module.layer_norm_weight.data.fill_(1.0)
            if module.layer_norm_bias is not None:
                module.layer_norm_bias.data.zero_()

    @classmethod
    def get_init_context(cls, is_quantized: bool, _is_ds_init_called: bool):
        """Override the default get_init_context method to allow for fp8 model initialization."""
        return []


class NVEsmModel(NVEsmPreTrainedModel):
    """The ESM Encoder-only protein language model.

    This model uses NVDIA's TransformerEngine to optimize attention layer training and inference.
    """

    def __init__(self, config: NVEsmConfig, add_pooling_layer: bool = True):
        """Initialize a NVEsmModel.

        Args:
            config (NVEsmConfig): The configuration of the model.
            add_pooling_layer (bool): Whether to add a pooling layer.
        """
        super().__init__(config)
        self.config = config

        # Ensure pad_token_id is set properly, defaulting to 0 if not specified
        if not hasattr(config, "pad_token_id") or config.pad_token_id is None:
            config.pad_token_id = 0
        self.embeddings = NVEsmEmbeddings(config)
        self.encoder = NVEsmEncoder(config)
        self.pooler = EsmPooler(config) if add_pooling_layer else None

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        """Get the input embeddings of the model."""
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value: torch.Tensor):
        """Set the input embeddings of the model.

        Args:
            value (torch.Tensor): The input embeddings.
        """
        self.embeddings.word_embeddings = value

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        **kwargs: Unpack[TransformersKwargs],
    ) -> BaseModelOutputWithPooling:
        """Forward pass of the NVEsmModel.

        Args:
            input_ids (torch.Tensor): The input ids.
            attention_mask (torch.Tensor): The attention mask.
            position_ids (torch.Tensor): The position ids.
            inputs_embeds (torch.Tensor): The input embeddings.
            **kwargs: Additional arguments, see TransformersKwargs for more details.

        Returns:
            BaseModelOutputWithPooling: The output of the model.
        """
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        batch_size, seq_length = input_shape
        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if attention_mask is None:
            attention_mask = torch.ones(((batch_size, seq_length)), device=device)

        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)

        # TE expects a boolean attention mask, where 1s are masked and 0s are not masked
        extended_attention_mask = extended_attention_mask < -1

        embedding_output = self.embeddings(
            input_ids=input_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            **kwargs,
        )
        encoder_outputs = self.encoder(
            embedding_output,
            attention_mask=extended_attention_mask,
            **kwargs,
        )
        sequence_output = encoder_outputs[0]
        pooled_output = self.pooler(sequence_output) if self.pooler is not None else None

        return BaseModelOutputWithPooling(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
        )


class NVEsmForMaskedLM(NVEsmPreTrainedModel):
    """NVEsmForMaskedLM is a TransformerEngine-optimized ESM model for masked language modeling."""

    _tied_weights_keys = ("lm_head.decoder.weight",)

    def __init__(self, config: NVEsmConfig):
        """Initialize a NVEsmForMaskedLM.

        Args:
            config (NVEsmConfig): The configuration of the model.
        """
        super().__init__(config)

        if config.is_decoder:
            logger.warning(
                "If you want to use `EsmForMaskedLM` make sure `config.is_decoder=False` for "
                "bi-directional self-attention."
            )

        self.esm = NVEsmModel(config, add_pooling_layer=False)
        self.lm_head = NVEsmLMHead(config)

        self.init_weights()
        self.post_init()

    def get_output_embeddings(self):
        """Get the output embeddings of the model."""
        return self.lm_head.decoder

    def set_output_embeddings(self, new_embeddings):
        """Set the output embeddings of the model."""
        self.lm_head.decoder = new_embeddings

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[TransformersKwargs],
    ) -> MaskedLMOutput:
        """Forward pass of the NVEsmForMaskedLM.

        Args:
            input_ids (torch.LongTensor): The input ids.
            attention_mask (torch.Tensor): The attention mask.
            position_ids (torch.LongTensor): The position ids.
            inputs_embeds (torch.FloatTensor): The input embeddings.
            labels (torch.LongTensor): The labels.
            **kwargs: Additional arguments, see TransformersKwargs for more details.

        Returns:
            MaskedLMOutput: The output of the model.
        """
        outputs = self.esm(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            **kwargs,
        )
        sequence_output = outputs[0]
        prediction_scores = self.lm_head(sequence_output)

        # Truncate logits back to original vocab_size if padding was used
        if self.config.padded_vocab_size != self.config.vocab_size:
            prediction_scores = prediction_scores[..., : self.config.vocab_size]

        masked_lm_loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            masked_lm_loss = loss_fct(
                prediction_scores.view(-1, self.config.vocab_size),
                labels.to(prediction_scores.device).view(-1),
            )

        return MaskedLMOutput(
            loss=masked_lm_loss,
            logits=prediction_scores,
            hidden_states=outputs.hidden_states,
        )


class NVEsmLMHead(nn.Module):
    """ESM Head for masked language modeling using TransformerEngine."""

    def __init__(self, config: NVEsmConfig):
        """Initialize a NVEsmLMHead.

        Args:
            config (NVEsmConfig): The configuration of the model.
        """
        super().__init__()
        self.dense = transformer_engine.pytorch.Linear(
            config.hidden_size,
            config.hidden_size,
            params_dtype=config.dtype,
        )

        self.decoder = transformer_engine.pytorch.LayerNormLinear(
            config.hidden_size,
            config.padded_vocab_size if config.padded_vocab_size is not None else config.vocab_size,
            bias=True,
            eps=config.layer_norm_eps,
            params_dtype=config.dtype,
        )

    def forward(self, features, **kwargs):
        """Forward pass of the NVEsmLMHead.

        Args:
            features (torch.Tensor): The features.
            **kwargs: Additional arguments.
        """
        x = self.dense(features)
        x = torch.nn.functional.gelu(x)
        x = self.decoder(x)
        return x


class NVEsmEmbeddings(nn.Module):
    """Modified version of EsmEmbeddings to support THD inputs."""

    def __init__(self, config):
        """Initialize a NVEsmEmbeddings."""
        super().__init__()
        self.word_embeddings = nn.Embedding(
            config.padded_vocab_size,
            config.hidden_size,
            padding_idx=config.pad_token_id,
            dtype=config.dtype,
        )

        self.layer_norm = (
            transformer_engine.pytorch.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
            if config.emb_layer_norm_before
            else None
        )

        if config.position_embedding_type != "rotary":
            raise ValueError(
                "The TE-accelerated ESM-2 model only supports rotary position embeddings, received "
                f"{config.position_embedding_type}"
            )

        self.padding_idx = config.pad_token_id
        self.token_dropout = config.token_dropout
        self.mask_token_id = config.mask_token_id

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        inputs_embeds=None,
        **kwargs: Unpack[TransformersKwargs],
    ):
        """Forward pass of the NVEsmEmbeddings."""
        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)

        # Note that if we want to support ESM-1 (not 1b!) in future then we need to support an
        # embedding_scale factor here.
        embeddings = inputs_embeds

        if (
            kwargs.get("cu_seq_lens_q") is not None
            and kwargs.get("cu_seq_lens_k") is not None
            and kwargs.get("max_length_q") is not None
            and kwargs.get("max_length_k") is not None
        ):
            using_thd = True
            attention_mask = None
        else:
            using_thd = False

        # Matt: ESM has the option to handle masking in MLM in a slightly unusual way. If the token_dropout
        # flag is False then it is handled in the same was as BERT/RoBERTa. If it is set to True, however,
        # masked tokens are treated as if they were selected for input dropout and zeroed out.
        # This "mask-dropout" is compensated for when masked tokens are not present, by scaling embeddings by
        # a factor of (fraction of unmasked tokens during training) / (fraction of unmasked tokens in sample).
        # This is analogous to the way that dropout layers scale down outputs during evaluation when not
        # actually dropping out values (or, equivalently, scale up their un-dropped outputs in training).
        if self.token_dropout and input_ids is not None:
            embeddings = embeddings.masked_fill((input_ids == self.mask_token_id).unsqueeze(-1), 0.0)
            mask_ratio_train = 0.15 * 0.8  # Hardcoded as the ratio used in all ESM model training runs

            if not using_thd:
                # BSHD token dropout correction
                src_lengths = attention_mask.sum(-1) if attention_mask is not None else input_ids.shape[1]
                n_masked_per_seq = (input_ids == self.mask_token_id).sum(-1).float()
                mask_ratio_observed = n_masked_per_seq / src_lengths
                scale_factor = (1 - mask_ratio_train) / (1 - mask_ratio_observed)
                embeddings = (embeddings * scale_factor[:, None, None]).to(embeddings.dtype)

            else:
                src_lengths = torch.diff(kwargs["cu_seq_lens_q"])
                # We need to find the number of masked tokens in each sequence in the padded batch.
                is_masked = (input_ids == self.mask_token_id).squeeze(0)
                n_masked_per_seq = torch.nested.nested_tensor_from_jagged(
                    is_masked, offsets=kwargs["cu_seq_lens_q"]
                ).sum(1)
                mask_ratio_observed = n_masked_per_seq.float() / src_lengths
                scale_factor = (1 - mask_ratio_train) / (1 - mask_ratio_observed)
                reshaped_scale_factor = torch.repeat_interleave(scale_factor, src_lengths, dim=0)
                embeddings = (embeddings * reshaped_scale_factor.unsqueeze(-1)).to(embeddings.dtype)

        if self.layer_norm is not None:
            embeddings = self.layer_norm(embeddings)

        if attention_mask is not None:
            embeddings = (embeddings * attention_mask.unsqueeze(-1)).to(embeddings.dtype)

        return embeddings


class NVEsmForTokenClassification(NVEsmPreTrainedModel):
    """Adds a token classification head to the model.

    Adapted from EsmForTokenClassification in Hugging Face Transformers `modeling_esm.py`.
    """

    def __init__(self, config):
        """Initialize NVEsmForTokenClassification."""
        super().__init__(config)
        self.num_labels = config.num_labels

        self.esm = NVEsmModel(config, add_pooling_layer=False)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = transformer_engine.pytorch.Linear(
            config.hidden_size, config.num_labels, params_dtype=config.dtype
        )

        self.init_weights()
        self.post_init()

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[TransformersKwargs],
    ) -> TokenClassifierOutput:
        """Forward pass for the token classification head.

        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
        """
        outputs = self.esm(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            **kwargs,
        )

        sequence_output = outputs[0]

        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()

            labels = labels.to(logits.device)
            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )