File size: 8,948 Bytes
179cd55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
from __future__ import annotations

from typing import Any

from transformers import PretrainedConfig


class CircuitGPTConfig(PretrainedConfig):
    """
    Minimal Hugging Face config wrapper around the circuit_sparsity GPTConfig.
    Only the fields exercised by the Neuronpedia runs are exposed.
    """

    model_type = "circuitgpt"

    def __init__(
        self,
        vocab_size: int = 2048,
        block_size: int = 256,
        n_layer: int = 8,
        n_head: int = 8,
        d_model: int = 1024,
        d_mlp: int | None = None,
        d_head: int | None = None,
        dropout: float = 0.0,
        bias: bool = True,
        ln_bias: bool = True,
        rms_norm: bool = True,
        activation_type: str = "gelu",
        residual_activation_type: str = "identity",
        tied_unembed: bool = False,
        unembed_rank: int | None = None,
        afrac: float | None = None,
        afrac_loctypes: str = "attn_in,attn_out,mlp_in,mlp_out",
        flash: bool = True,
        use_position_embeddings: bool = False,
        sink: bool = False,
        enable_bigram_table: bool = False,
        learnable_bigram_table: bool = False,
        bigram_table_rank: int | None = None,
        dropout_cat_pos_emb: bool = False,
        sinusoidal_cat_pos_emb: bool = False,
        d_pos_emb: int | None = None,
        auto_map: dict[str, str] | None = None,
        **kwargs: Any,
    ) -> None:
        # Drop unsupported/sensitive keys that may be present in a loaded config.
        for key in [
            "afrac_ste",
            "afrac_ste_only_non_neurons",
            "afrac_approx",
            "rtopk",
            "mup",
            "mup_width_multiplier",
            "grad_checkpointing",
            "enable_fp8_linear",
            "scale_invariance",
            "cat_pos_emb",
        ]:
            kwargs.pop(key, None)
        d_mlp = d_mlp or 4 * d_model
        d_head = d_head or d_model // n_head

        # Avoid duplicate kwargs when loading from a config dict.
        bos_token_id = kwargs.pop("bos_token_id", None)
        eos_token_id = kwargs.pop("eos_token_id", vocab_size - 1)
        pad_token_id = kwargs.pop("pad_token_id", None)

        super().__init__(
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            pad_token_id=pad_token_id,
            **kwargs,
        )

        self.vocab_size = vocab_size
        self.block_size = block_size
        self.max_position_embeddings = block_size
        self.n_layer = n_layer
        self.n_head = n_head
        self.d_model = d_model
        self.d_mlp = d_mlp
        self.d_head = d_head
        self.dropout = dropout
        self.bias = bias
        self.ln_bias = ln_bias
        self.rms_norm = rms_norm
        self.activation_type = activation_type
        self.residual_activation_type = residual_activation_type
        self.tied_unembed = tied_unembed
        self.unembed_rank = unembed_rank
        self.afrac = afrac
        self.afrac_loctypes = afrac_loctypes
        self.flash = flash
        self.use_position_embeddings = use_position_embeddings
        self.d_pos_emb = d_pos_emb
        self.sink = sink
        self.enable_bigram_table = enable_bigram_table
        self.learnable_bigram_table = learnable_bigram_table
        self.bigram_table_rank = bigram_table_rank
        self.dropout_cat_pos_emb = dropout_cat_pos_emb
        self.sinusoidal_cat_pos_emb = sinusoidal_cat_pos_emb
        self.is_decoder = True
        # Provide explicit auto_map entries so AutoModel/AutoConfig can locate
        # the custom classes when trust_remote_code=True on the Hub.
        self.auto_map = auto_map or {
            "AutoConfig": "config.CircuitGPTConfig",
            "AutoModelForCausalLM": "modeling_circuitgpt.CircuitGPTForCausalLM",
        }

    # ---------------------------------------------------------------------
    # Conversion helpers
    # ---------------------------------------------------------------------
    @classmethod
    def from_circuit_config(cls, circuit_config: "GPTConfig") -> "CircuitGPTConfig":  # type: ignore[name-defined]
        config_dict: dict[str, Any] = {
            "vocab_size": circuit_config.vocab_size,
            "block_size": circuit_config.block_size,
            "n_layer": circuit_config.n_layer,
            "n_head": circuit_config.n_head,
            "d_model": circuit_config.d_model,
            "d_mlp": circuit_config.d_mlp,
            "d_head": circuit_config.d_head,
            "dropout": circuit_config.dropout,
            "bias": circuit_config.bias,
            "ln_bias": circuit_config.ln_bias,
            "rms_norm": circuit_config.rms_norm,
            "activation_type": circuit_config.activation_type,
            "residual_activation_type": circuit_config.residual_activation_type,
            "tied_unembed": circuit_config.tied_unembed,
            "unembed_rank": circuit_config.unembed_rank,
            "afrac": circuit_config.afrac,
            "afrac_loctypes": circuit_config.afrac_loctypes,
            "flash": circuit_config.flash,
            "use_position_embeddings": circuit_config.d_pos_emb is not None,
            "d_pos_emb": getattr(circuit_config, "d_pos_emb", None),
            "sink": getattr(circuit_config, "sink", False),
            "enable_bigram_table": getattr(circuit_config, "enable_bigram_table", False),
            "learnable_bigram_table": getattr(circuit_config, "learnable_bigram_table", False),
            "bigram_table_rank": getattr(circuit_config, "bigram_table_rank", None),
            "dropout_cat_pos_emb": getattr(circuit_config, "dropout_cat_pos_emb", False),
            "sinusoidal_cat_pos_emb": getattr(circuit_config, "sinusoidal_cat_pos_emb", False),
        }
        return cls(**config_dict)

    def to_circuit_config(self) -> "GPTConfig":  # type: ignore[name-defined]
        from circuit_sparsity.gpt import GPTConfig as CircuitConfig

        config_kwargs: dict[str, Any] = dict(
            vocab_size=self.vocab_size,
            block_size=self.block_size,
            n_layer=self.n_layer,
            n_head=self.n_head,
            d_model=self.d_model,
            dropout=self.dropout,
            bias=self.bias,
            ln_bias=self.ln_bias,
            rms_norm=self.rms_norm,
            activation_type=self.activation_type,
            residual_activation_type=self.residual_activation_type,
            tied_unembed=self.tied_unembed,
            unembed_rank=self.unembed_rank,
            afrac=self.afrac,
            afrac_loctypes=self.afrac_loctypes,
            flash=self.flash,
            afrac_ste=False,
            afrac_ste_only_non_neurons=False,
            afrac_approx=False,
            rtopk=False,
            mup=False,
            mup_width_multiplier=None,
            grad_checkpointing=False,
            enable_fp8_linear=False,
            scale_invariance=False,
            d_mlp=self.d_mlp,
            d_head=self.d_head,
            enable_sparse_kernels=False,
            enable_bigram_table=self.enable_bigram_table,
            learnable_bigram_table=self.learnable_bigram_table,
            bigram_table_rank=self.bigram_table_rank,
            d_pos_emb=self.d_pos_emb
            if self.d_pos_emb is not None
            else (self.d_model if self.use_position_embeddings else None),
            sink=self.sink,
            dropout_cat_pos_emb=self.dropout_cat_pos_emb,
            sinusoidal_cat_pos_emb=self.sinusoidal_cat_pos_emb,
        )
        return CircuitConfig(**config_kwargs)

    def to_dict(self) -> dict[str, Any]:
        base = super().to_dict()
        data = {
            "vocab_size": self.vocab_size,
            "block_size": self.block_size,
            "n_layer": self.n_layer,
            "n_head": self.n_head,
            "d_model": self.d_model,
            "d_mlp": self.d_mlp,
            "d_head": self.d_head,
            "dropout": self.dropout,
            "bias": self.bias,
            "ln_bias": self.ln_bias,
            "rms_norm": self.rms_norm,
            "activation_type": self.activation_type,
            "residual_activation_type": self.residual_activation_type,
            "tied_unembed": self.tied_unembed,
            "unembed_rank": self.unembed_rank,
            "flash": self.flash,
            "afrac": self.afrac,
            "afrac_loctypes": self.afrac_loctypes,
            "use_position_embeddings": self.use_position_embeddings,
            "d_pos_emb": self.d_pos_emb,
            "sink": self.sink,
            "enable_bigram_table": self.enable_bigram_table,
            "learnable_bigram_table": self.learnable_bigram_table,
            "bigram_table_rank": self.bigram_table_rank,
            "dropout_cat_pos_emb": self.dropout_cat_pos_emb,
            "sinusoidal_cat_pos_emb": self.sinusoidal_cat_pos_emb,
            "auto_map": self.auto_map,
        }
        base.update(data)
        return base