File size: 34,543 Bytes
179cd55 5cd6989 179cd55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 |
"""
Full definition of a GPT Language Model, all of it in this single file.
References:
1) the official GPT-2 TensorFlow implementation released by OpenAI:
https://github.com/openai/gpt-2/blob/master/src/model.py
2) huggingface/transformers PyTorch implementation:
https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py
"""
import math
from dataclasses import dataclass
from typing import Literal
import torch
import torch.nn as nn
import torch.nn.functional as F
# has to be down here to avoid loading cuda too early
from .hook_utils import (
hook_namespace,
hook_save,
torch_recompute_preserving_hook_context,
)
def sample_top_k(*, n: int, k: int, shape: tuple[int, ...]):
"""Fallback sampler used only when sparse kernels are enabled."""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
return torch.randn(shape, device=device, dtype=torch.float32)
class AbsTopK(nn.Module):
def __init__(self, k):
super().__init__()
self.k = k
def forward(self, x):
vals, inds = torch.topk(x.abs(), self.k, dim=-1, sorted=False)
ret = torch.zeros_like(x)
ret.scatter_(-1, inds, x.gather(-1, inds))
return ret
def barrier():
# stub
pass
class LayerNorm(nn.Module):
"""LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False"""
def __init__(self, ndim, bias):
super().__init__()
self.weight = nn.Parameter(torch.ones(ndim))
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
def forward(self, input):
return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.d_model % config.n_head == 0
# key, query, value projections for all heads, but in a batch
self.c_attn = config.Linear(
config.d_model, 3 * config.d_head * config.n_head, bias=config.bias
)
# output projection
self.c_proj = config.Linear(config.d_head * config.n_head, config.d_model, bias=config.bias)
# regularization
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
self.n_head = config.n_head
self.d_head = config.d_head
self.d_model = config.d_model
self.dropout = config.dropout
self.config = config
# flash attention make GPU go brrrrr but support is only in PyTorch >= 2.0
self.flash = hasattr(torch.nn.functional, "scaled_dot_product_attention") and config.flash
if self.flash:
self.attn_imp = (
SDPAWithSink(config.n_head) if config.sink else F.scaled_dot_product_attention
)
if not self.flash:
print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
# causal mask to ensure that attention is only applied to the left in the input sequence
self.register_buffer(
"bias",
torch.tril(torch.ones(config.block_size, config.block_size)).view(
1, 1, config.block_size, config.block_size
),
)
def forward(self, x):
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (d_model)
x = self.config.maybe_activation_sparsity(x, "attn_in")
x = hook_save("act_in", x)
if self.config.debug_nans:
assert x.isfinite().all(), "nan in input"
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
q, k, v = self.c_attn(x).split(self.n_head * self.d_head, dim=2)
k = self.config.maybe_activation_sparsity(k, "attn_k")
q = self.config.maybe_activation_sparsity(q, "attn_q")
v = self.config.maybe_activation_sparsity(v, "attn_v")
k = hook_save("k", k) # (B, T, n_head * d_head)
q = hook_save("q", q) # (B, T, n_head * d_head)
v = hook_save("v", v) # (B, T, n_head * d_head)
k = k.view(B, T, self.n_head, self.d_head).transpose(1, 2) # (B, nh, T, hs)
q = q.view(B, T, self.n_head, self.d_head).transpose(1, 2) # (B, nh, T, hs)
v = v.view(B, T, self.n_head, self.d_head).transpose(1, 2) # (B, nh, T, hs)
if self.config.debug_nans:
assert q.isfinite().all(), "nan in query"
assert k.isfinite().all(), "nan in key"
assert v.isfinite().all(), "nan in value"
attention_scale = 1.0 / math.sqrt(k.size(-1))
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
if self.flash:
# efficient attention using Flash Attention CUDA kernels
y = self.attn_imp(
q,
k,
v,
dropout_p=self.dropout if self.training else 0,
is_causal=True,
scale=attention_scale,
)
else:
# manual implementation of attention
att = (q @ k.transpose(-2, -1)) * attention_scale
att = att.masked_fill(
self.bias[:, :, :T, :T] == 0, torch.finfo(att.dtype).min
) # float("-inf"))
att = F.softmax(att, dim=-1)
att = self.attn_dropout(att)
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
if self.config.debug_nans:
assert y.isfinite().all(), "nan in attention output"
y = (
y.transpose(1, 2).contiguous().view(B, T, self.n_head * self.d_head)
) # re-assemble all head outputs side by side
# y = self.config.maybe_activation_sparsity(y)
y = hook_save("y", y) # (B, T, n_head * d_head)
# output projection
y = self.resid_dropout(self.c_proj(y))
if self.config.debug_nans:
assert y.isfinite().all(), "nan in attention output 2"
y = self.config.maybe_activation_sparsity(y, "attn_out")
return y
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.c_fc = config.Linear(config.d_model, config.d_mlp, bias=config.bias)
self.act_fn = {
"gelu": nn.GELU(),
"relu": nn.ReLU(),
}[config.activation_type]
self.c_proj = config.Linear(config.d_mlp, config.d_model, bias=config.bias)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
x = self.config.maybe_activation_sparsity(x, "mlp_in")
x = hook_save("act_in", x)
if self.config.debug_nans:
assert x.isfinite().all(), "nan in mlp input"
x = self.c_fc(x)
if self.config.debug_nans:
assert x.isfinite().all(), "nan in mlp after c_fc"
x = self.act_fn(x)
x = self.config.maybe_activation_sparsity(x, "mlp_neuron")
x = hook_save("post_act", x)
if self.config.debug_nans:
assert x.isfinite().all(), "nan in mlp after act"
x = self.c_proj(x)
if self.config.debug_nans:
assert x.isfinite().all(), "nan in mlp after c_proj"
x = self.dropout(x)
x = self.config.maybe_activation_sparsity(x, "mlp_out")
return x
class SDPAWithSink(nn.Module):
"""
Adds a learnable denominator-only term ("attention sink") to SDPA by
concatenating a dummy KV slot whose logit is b and whose V is zero.
"""
def __init__(self, num_heads: int, init_logit: float = 0.0):
super().__init__()
shape = (num_heads,)
self.sink_logit = nn.Parameter(torch.full(shape, init_logit))
def forward(
self,
q: torch.Tensor, # (B, H, Lq, D)
k: torch.Tensor, # (B, H, Lk, D)
v: torch.Tensor, # (B, H, Lk, Dv)
*,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: float | None = None,
) -> torch.Tensor:
B, H, Lq, D = q.shape
_, _, Lk, _ = k.shape
Dv = v.size(-1)
# 1) Prepend a dummy KV slot (always visible)
k_sink = torch.zeros((B, H, 1, D), dtype=q.dtype, device=q.device)
v_sink = torch.zeros((B, H, 1, Dv), dtype=v.dtype, device=v.device)
k_aug = torch.cat([k_sink, k], dim=2) # (B,H,Lk+1,D)
v_aug = torch.cat([v_sink, v], dim=2) # (B,H,Lk+1,Dv)
# 2) Build shifted causal allow-mask over keys (columns 1..), always allow col 0 (sink)
# allow: 1 where attending is allowed, 0 where disallowed
# For real keys: allow[i, j+1] = 1 if j <= i else 0 (lower-triangular)
allow = torch.zeros((Lq, Lk + 1), dtype=torch.bool, device=q.device)
allow[:, 0] = True # sink column always on
# lower-triangular for real keys shifted by +1
real = torch.ones((Lq, Lk), dtype=torch.bool, device=q.device).tril()
allow[:, 1:] = real
# Broadcast to (B,H,Lq,Lk+1)
allow = allow.view(1, 1, Lq, Lk + 1).expand(B, H, Lq, Lk + 1)
# 3) Turn it into an additive mask. 0 for allowed, -inf for disallowed
neg_inf = torch.finfo(q.dtype).min
base_mask = torch.where(
allow,
torch.zeros((), dtype=q.dtype, device=q.device),
torch.full((), neg_inf, dtype=q.dtype, device=q.device),
) # (B,H,Lq,Lk+1)
# 4) Add learnable sink bias b to column 0 (per head or shared)
if self.sink_logit.numel() == H:
b = self.sink_logit.to(dtype=q.dtype, device=q.device).view(1, H, 1, 1) # (1,H,1,1)
else:
b = self.sink_logit.to(dtype=q.dtype, device=q.device).view(1, 1, 1, 1) # (1,1,1,1)
sink_bias_mask = torch.zeros((1, 1, 1, Lk + 1), dtype=q.dtype, device=q.device)
sink_bias_mask[..., 0] = 1.0
attn_mask = base_mask + sink_bias_mask * b # (B,H,Lq,Lk+1)
# 5) SDPA with our custom mask; keep is_causal=False to avoid double-masking
out = F.scaled_dot_product_attention(
q,
k_aug,
v_aug,
attn_mask=attn_mask,
dropout_p=dropout_p,
is_causal=False, # important
scale=scale,
)
return out
class Block(nn.Module):
# block exactly satisfies the invariant that forward = forward_mlp_block . forward_attn_block
def __init__(self, config):
super().__init__()
self.config = config
self.ln_1 = (
nn.RMSNorm(config.d_model)
if config.rms_norm
else LayerNorm(config.d_model, bias=config.ln_bias)
)
self.attn = CausalSelfAttention(config)
self.ln_2 = (
nn.RMSNorm(config.d_model)
if config.rms_norm
else LayerNorm(config.d_model, bias=config.ln_bias)
)
self.mlp = MLP(config)
def forward_attn_block(self, x):
x = hook_save("resid_in", x)
if self.config.debug_nans:
assert x.isfinite().all(), "nan in blk input"
with hook_namespace("attn"):
if self.config.grad_checkpointing:
x = x + hook_save(
"resid_delta",
torch_recompute_preserving_hook_context(
lambda x: self.attn(self.ln_1(x)), x, use_reentrant=False
),
)
else:
x = x + hook_save("resid_delta", self.attn(self.ln_1(x)))
if self.config.residual_activation_type == "relu":
x = torch.relu(x)
x = self.config.maybe_activation_sparsity(x, "resid_post_attn")
return x
def forward_mlp_block(self, x):
x = hook_save("resid_mid", x)
with hook_namespace("mlp"):
if self.config.grad_checkpointing:
x = x + hook_save(
"resid_delta",
torch_recompute_preserving_hook_context(
lambda x: self.mlp(self.ln_2(x)), x, use_reentrant=False
),
)
else:
x = x + hook_save("resid_delta", self.mlp(self.ln_2(x)))
if self.config.residual_activation_type == "relu":
x = torch.relu(x)
x = self.config.maybe_activation_sparsity(x, "resid_post_mlp")
return x
def forward(self, x):
x = self.forward_attn_block(x)
x = self.forward_mlp_block(x)
return x
class CausalSelfAttentionCatPosEmb(CausalSelfAttention):
def __init__(self, config):
# initialize base attention with standard shapes, we'll override projections
super().__init__(config)
assert config.d_model % config.n_head == 0
# key, query, value projections for all heads, but in a batch
self.c_attn = config.Linear(
config.d_model_in, 3 * config.d_head * config.n_head, bias=config.bias
)
# output projection
self.c_proj = config.Linear(config.d_head * config.n_head, config.d_model, bias=config.bias)
# regularization
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
self.n_head = config.n_head
self.d_head = config.d_head
self.d_model_in = config.d_model_in
self.d_model = config.d_model
self.dropout = config.dropout
self.config = config
# flash attention make GPU go brrrrr but support is only in PyTorch >= 2.0
self.flash = hasattr(torch.nn.functional, "scaled_dot_product_attention") and config.flash
if not self.flash:
print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
# causal mask to ensure that attention is only applied to the left in the input sequence
self.register_buffer(
"bias",
torch.tril(torch.ones(config.block_size, config.block_size)).view(
1, 1, config.block_size, config.block_size
),
)
def forward(self, x, pos_emb_to_cat):
# Broadcast pos emb over batch if provided as shape [1, T, C]
if pos_emb_to_cat is not None and pos_emb_to_cat.size(0) == 1 and x.size(0) != 1:
pos_emb_to_cat = pos_emb_to_cat.expand(x.size(0), -1, -1)
x = torch.cat([x, pos_emb_to_cat], dim=-1)
return super().forward(x)
class MLPCatPosEmb(MLP):
def __init__(self, config):
# initialize base MLP, we'll override the projections to match cat shapes
super().__init__(config)
self.config = config
self.c_fc = config.Linear(config.d_model_in, config.d_mlp, bias=config.bias)
self.act_fn = {
"gelu": nn.GELU(),
"relu": nn.ReLU(),
}[config.activation_type]
self.c_proj = config.Linear(config.d_mlp, config.d_model, bias=config.bias)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x, pos_emb_to_cat):
# Broadcast pos emb over batch if provided as shape [1, T, C]
if pos_emb_to_cat is not None and pos_emb_to_cat.size(0) == 1 and x.size(0) != 1:
pos_emb_to_cat = pos_emb_to_cat.expand(x.size(0), -1, -1)
x = torch.cat([x, pos_emb_to_cat], dim=-1)
x = super().forward(x)
return x
class BlockCatPosEmb(Block):
# block exactly satisfies the invariant that forward = forward_mlp_block . forward_attn_block
def __init__(self, config):
# initialize base Block to get ln_1/ln_2 and other invariants
super().__init__(config)
self.ln_p1 = (
nn.RMSNorm(config.d_pos_emb)
if config.rms_norm
else LayerNorm(config.d_pos_emb, bias=config.ln_bias)
)
self.ln_p2 = (
nn.RMSNorm(config.d_pos_emb)
if config.rms_norm
else LayerNorm(config.d_pos_emb, bias=config.ln_bias)
)
self.attn = CausalSelfAttentionCatPosEmb(config)
self.mlp = MLPCatPosEmb(config)
def forward_attn_block(self, x, p):
x = hook_save("resid_in", x)
if self.config.debug_nans:
assert x.isfinite().all(), "nan in blk input"
with hook_namespace("attn"):
if self.config.grad_checkpointing:
x = x + hook_save(
"resid_delta",
torch_recompute_preserving_hook_context(
lambda x, p: self.attn(self.ln_1(x), self.ln_p1(p)),
x,
p,
use_reentrant=False,
),
)
else:
x = x + hook_save("resid_delta", self.attn(self.ln_1(x), self.ln_p1(p)))
if self.config.residual_activation_type == "relu":
x = torch.relu(x)
x = self.config.maybe_activation_sparsity(x, "resid_post_attn")
return x
def forward_mlp_block(self, x, p):
x = hook_save("resid_mid", x)
with hook_namespace("mlp"):
if self.config.grad_checkpointing:
x = x + hook_save(
"resid_delta",
torch_recompute_preserving_hook_context(
lambda x, p: self.mlp(self.ln_2(x), self.ln_p2(p)),
x,
p,
use_reentrant=False,
),
)
else:
x = x + hook_save("resid_delta", self.mlp(self.ln_2(x), self.ln_p2(p)))
if self.config.residual_activation_type == "relu":
x = torch.relu(x)
x = self.config.maybe_activation_sparsity(x, "resid_post_mlp")
return x
def forward(self, x, pos_emb_to_cat):
x = self.forward_attn_block(x, pos_emb_to_cat)
x = self.forward_mlp_block(x, pos_emb_to_cat)
return x
@dataclass
class GPTConfig:
block_size: int = 1024
vocab_size: int = 50304 # GPT-2 vocab_size of 50257, padded up to nearest multiple of 64 for efficiency # TODO: FLAG FOR ACHY
n_layer: int = 12
n_head: int = 12
d_head: int | None = None # defaults to d_model // n_head
d_model: int = 768
dropout: float = 0.0
bias: bool = (
True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
)
ln_bias: bool = (
True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
)
rms_norm: bool = False # use RMSNorm instead of LayerNorm
residual_activation_type: Literal["identity", "relu"] = "identity"
activation_type: Literal["gelu", "relu"] = "gelu"
afrac: float | None = None # fraction of activations to keep
afrac_loctypes: str = "attn_in,attn_out,mlp_in,mlp_out"
debug_nans: bool = False
tied_unembed: bool = True
tokenizer_name: str = "tinypython_2k"
grad_checkpointing: bool = True
d_mlp: int | None = None # multiplier for MLP hidden layer size
enable_bigram_table: bool = False
learnable_bigram_table: bool = False
d_pos_emb: int | None = None
dropout_cat_pos_emb: bool = False
sinusoidal_cat_pos_emb: bool = False
enable_sparse_kernels: bool = False
flash: bool = True
sink: bool = False
@property
def cat_pos_emb(self):
return self.d_pos_emb is not None
@property
def d_model_in(self):
return self.d_model + self.d_pos_emb if self.cat_pos_emb else self.d_model
def __post_init__(self):
assert self.d_model % self.n_head == 0
assert self.residual_activation_type in ["identity", "relu"]
assert self.activation_type in ["gelu", "relu"]
if self.d_mlp is None:
self.d_mlp = 4 * self.d_model
if self.d_head is None:
self.d_head = self.d_model // self.n_head
@property
def Linear(self):
return nn.Linear
def maybe_activation_sparsity(self, x, loctype):
if self.afrac is not None and loctype in self.afrac_loctypes.split(","):
def keep_abstopk(x, k):
ret = torch.zeros_like(x)
_, topk_inds = torch.topk(x.abs(), k, dim=-1, sorted=False)
ret.scatter_(-1, topk_inds, x.gather(-1, topk_inds))
return ret
x = keep_abstopk(
x,
k=int(self.afrac * x.shape[-1]),
)
return x
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
assert config.vocab_size is not None
assert config.block_size is not None
self.config = config
if config.cat_pos_emb:
block_cls = BlockCatPosEmb
else:
block_cls = Block
self.transformer = nn.ModuleDict(
dict(
wte=nn.Embedding(config.vocab_size, config.d_model),
wpe=nn.Embedding(config.block_size, config.d_pos_emb or config.d_model),
drop=nn.Dropout(config.dropout),
h=nn.ModuleList([(block_cls(config)) for _ in range(config.n_layer)]),
ln_f=nn.RMSNorm(config.d_model)
if config.rms_norm
else LayerNorm(config.d_model, bias=config.ln_bias),
)
)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
self.register_buffer(
"final_logits_bias", torch.zeros(config.vocab_size, dtype=torch.float32)
)
if self.config.enable_bigram_table:
if self.config.learnable_bigram_table:
# HACK: low rank to fit in mem
self.bigram_table = nn.Parameter(
torch.zeros(config.vocab_size, config.vocab_size, dtype=torch.float32)
)
else:
self.register_buffer(
"bigram_table",
torch.zeros(config.vocab_size, config.vocab_size, dtype=torch.float32),
)
else:
self.bigram_table = None
# Never tie embeddings/unembed to avoid accidental aliasing in exports.
config.tied_unembed = False
# init all weights
self.apply(self._init_weights)
# apply special scaled init to the residual projections, per GPT-2 paper
for pn, p in self.named_parameters():
if pn.endswith("c_proj.weight"):
if p.is_sparse:
num_nonzero = p._nnz()
p._values().data = (
sample_top_k(n=p.numel(), k=num_nonzero, shape=(num_nonzero,))
* 0.02
/ math.sqrt(2 * config.n_layer)
)
else:
torch.nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * config.n_layer))
# If requested, initialize positional embeddings with fixed sinusoids and freeze
if config.cat_pos_emb and config.sinusoidal_cat_pos_emb:
assert config.d_pos_emb is not None, (
"sinusoidal_cat_pos_emb requires cat_pos_emb (d_pos_emb must be set)"
)
with torch.no_grad():
T = config.block_size
D = config.d_pos_emb
device = self.transformer.wpe.weight.device
dtype = self.transformer.wpe.weight.dtype
positions = torch.arange(T, device=device, dtype=dtype).unsqueeze(1) # [T,1]
d_half = max(1, D // 2)
# periods from 4 tokens up to block_size tokens (log-spaced)
T_float = float(T)
p_min = 4.0
p_max = max(p_min, T_float)
periods = torch.logspace(
math.log10(p_min), math.log10(p_max), steps=d_half, device=device, dtype=dtype
)
freqs = 2 * math.pi / periods # [d_half]
angles = positions * freqs # [T, d_half]
sinv = torch.sin(angles)
cosv = torch.cos(angles)
enc = torch.cat([sinv, cosv], dim=1) # [T, 2*d_half]
if enc.shape[1] < D:
pad = torch.zeros(T, D - enc.shape[1], device=device, dtype=dtype)
enc = torch.cat([enc, pad], dim=1)
elif enc.shape[1] > D:
enc = enc[:, :D]
self.transformer.wpe.weight.copy_(enc)
self.transformer.wpe.weight.requires_grad_(False)
# report number of parameters
print("number of parameters: %.2fM" % (self.get_num_params() / 1e6,))
@torch.no_grad()
def _initialize_weights(self, module: nn.Module) -> None:
"""
Compatibility shim for newer `transformers` versions.
`transformers.PreTrainedModel.initialize_weights()` will treat any submodule that
defines `_init_weights` as a nested "sub-model" and will recursively call that
submodule's `_initialize_weights`. Our core `GPT` module historically only
implemented `_init_weights`, so we provide this wrapper to match HF's contract.
"""
if getattr(module, "_is_hf_initialized", False):
return
self._init_weights(module)
module._is_hf_initialized = True
def get_num_params(self, non_embedding=True):
"""
Return the number of parameters in the model.
For non-embedding count (default), the position embeddings get subtracted.
The token embeddings would too, except due to the parameter sharing these
params are actually used as weights in the final layer, so we include them.
"""
n_params = sum(p.numel() for p in self.parameters())
if non_embedding:
n_params -= self.transformer.wpe.weight.numel()
return n_params
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None, include_resid_mid=False):
device = idx.device
b, t = idx.size()
assert t <= self.config.block_size, (
f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
)
# pos = torch.arange(0, t, dtype=torch.long, device=device) # shape (t)
# forward the GPT model itself
tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, d_model)
# pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, d_model)
pos_emb = self.transformer.wpe.weight[:t].unsqueeze(0)
if self.config.cat_pos_emb:
x = self.transformer.drop(tok_emb)
else:
x = self.transformer.drop(tok_emb + pos_emb)
if self.config.debug_nans:
assert x.isfinite().all(), "nan in initial post-embedding"
if self.config.enable_bigram_table:
# add bigram table to the logits bias
additional_logits_bias = F.embedding(idx, self.bigram_table, padding_idx=-1)
additional_logits_bias = additional_logits_bias.to(x.dtype)
else:
additional_logits_bias = None
if self.config.cat_pos_emb:
pos_emb_to_cat = pos_emb
if self.config.dropout_cat_pos_emb:
pos_emb_to_cat = self.transformer.drop(pos_emb)
else:
pos_emb_to_cat = None
return self.forward_tail(
x,
n=0,
targets=targets,
additional_logits_bias=additional_logits_bias,
include_resid_mid=include_resid_mid, # this is hacky we should just switch to using hooks
pos_emb_to_cat=pos_emb_to_cat,
)
def forward_tail(
self,
x,
n,
targets=None,
additional_logits_bias=None,
include_resid_mid=False,
pos_emb_to_cat=None,
):
# print(x.shape)
hs = []
blks = list(self.transformer.h)
if include_resid_mid:
blks = list_join(
[
[
blk.forward_attn_block,
blk.forward_mlp_block,
]
for blk in blks
]
)
assert n <= len(blks)
for i, block_fn in enumerate(blks[n:]):
global curlayer
curlayer = i
with hook_namespace(f"{i // 2}") if include_resid_mid else hook_namespace(f"{i}"):
hs.append(x)
if self.config.cat_pos_emb:
x = block_fn(x, pos_emb_to_cat)
else:
x = block_fn(x)
x = hook_save("final_resid", x)
x = self.transformer.ln_f(x)
logits = (
self.lm_head(x)
+ self.final_logits_bias
+ (additional_logits_bias if additional_logits_bias is not None else 0)
)
if targets is not None:
loss = F.cross_entropy(
logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1
)
else:
loss = torch.zeros(1, device=x.device)
return logits, loss, hs # hs is deprecated in favor of hook stuff
def crop_block_size(self, block_size):
# model surgery to decrease the block size if necessary
# e.g. we may load the GPT2 pretrained model checkpoint (block size 1024)
# but want to use a smaller block size for some smaller, simpler model
assert block_size <= self.config.block_size
self.config.block_size = block_size
self.transformer.wpe.weight = nn.Parameter(self.transformer.wpe.weight[:block_size])
for block in self.transformer.h:
if hasattr(block.attn, "bias"):
block.attn.bias = block.attn.bias[:, :, :block_size, :block_size]
@torch.no_grad()
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
"""
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
the sequence max_new_tokens times, feeding the predictions back into the model each time.
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
"""
for _ in range(max_new_tokens):
# if the sequence context is growing too long we must crop it at block_size
idx_cond = (
idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size :]
)
# forward the model to get the logits for the index in the sequence
logits, _, _ = self(idx_cond)
# pluck the logits at the final step and scale by desired temperature
logits = logits[:, -1, :] / temperature
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, -1:]] = -float("Inf")
# apply softmax to convert logits to (normalized) probabilities
probs = F.softmax(logits, dim=-1)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1)
# append sampled index to the running sequence and continue
idx = torch.cat((idx, idx_next), dim=1)
return idx
def is_mlp_param(self, p):
return id(p) in list_join(
[
[
id(self.transformer.h[i].mlp.c_fc.weight),
id(self.transformer.h[i].mlp.c_proj.weight),
]
for i in range(self.config.n_layer)
]
)
def is_param_embed(self, p):
return p is self.transformer.wte.weight or p is self.transformer.wpe.weight
def is_attn_param(self, p):
return id(p) in list_join(
[
[
id(self.transformer.h[i].attn.c_attn.weight),
id(self.transformer.h[i].attn.c_proj.weight),
]
for i in range(self.config.n_layer)
]
)
def is_bias(self, p):
return id(p) in list_join(
[
[
id(self.transformer.h[i].attn.c_attn.bias),
id(self.transformer.h[i].attn.c_proj.bias),
id(self.transformer.h[i].mlp.c_fc.bias),
id(self.transformer.h[i].mlp.c_proj.bias),
]
for i in range(self.config.n_layer)
]
)
def is_ln_param(self, p):
return id(p) in list_join(
[
[
id(self.transformer.h[i].ln_1.weight),
id(self.transformer.h[i].ln_2.weight),
]
for i in range(self.config.n_layer)
]
) + [
id(self.transformer.ln_f.weight),
]
def is_sparse_param(self, p, dense_embeddings=None, dense_unembed=None, dense_biases=None):
# if these params aren't specified, then still give answers, but only for uncontroversial params
if dense_embeddings is None:
assert p is not self.transformer.wte.weight and p is not self.transformer.wpe.weight
if dense_unembed is None:
assert p is not self.lm_head.weight
if dense_biases is None:
assert not self.is_bias(p)
if p is self.transformer.wte.weight or p is self.transformer.wpe.weight:
return not dense_embeddings
if p is self.lm_head.weight:
return not dense_unembed
if self.is_bias(p):
return not dense_biases
return id(p) in list_join(
[
[
id(self.transformer.h[i].attn.c_attn.weight),
id(self.transformer.h[i].attn.c_proj.weight),
id(self.transformer.h[i].mlp.c_fc.weight),
id(self.transformer.h[i].mlp.c_proj.weight),
]
for i in range(self.config.n_layer)
]
)
def list_join(xss: list[list]) -> list:
"""monadic join for lists"""
return [x for xs in xss for x in xs]
|