Papers
arxiv:2601.04620

AgentDevel: Reframing Self-Evolving LLM Agents as Release Engineering

Published on Jan 8
· Submitted by
Di Zhang
on Jan 9
Authors:

Abstract

AgentDevel presents a release engineering approach for large language model agents that treats them as shippable artifacts and emphasizes stable, auditable improvements through externalized testing and diagnostic processes.

AI-generated summary

Recent progress in large language model (LLM) agents has largely focused on embedding self-improvement mechanisms inside the agent or searching over many concurrent variants. While these approaches can raise aggregate scores, they often yield unstable and hard-to-audit improvement trajectories, making it difficult to guarantee non-regression or to reason about failures across versions. We reframe agent improvement as release engineering: agents are treated as shippable artifacts, and improvement is externalized into a regression-aware release pipeline. We introduce AgentDevel, a release engineering pipeline that iteratively runs the current agent, produces implementation-blind, symptom-level quality signals from execution traces, synthesizes a single release candidate (RC) via executable diagnosis, and promotes it under flip-centered gating. AgentDevel features three core designs: (i) an implementation-blind LLM critic that characterizes failure appearances without accessing agent internals, (ii) script-based executable diagnosis that aggregates dominant symptom patterns and produces auditable engineering specifications, and (iii) flip-centered gating that prioritizes pass to fail regressions and fail to pass fixes as first-class evidence. Unlike population-based search or in-agent self-refinement, AgentDevel maintains a single canonical version line and emphasizes non-regression as a primary objective. Experiments on execution-heavy benchmarks demonstrate that AgentDevel yields stable improvements with significantly fewer regressions while producing reproducible, auditable artifacts. Overall, AgentDevel provides a practical development discipline for building, debugging, and releasing LLM agents as software development.

Community

Recent progress in large language model (LLM) agents has largely focused on embedding self-improvement mechanisms inside the agent or searching over many concurrent variants. While these approaches can raise aggregate scores, they often yield unstable and hard-to-audit improvement trajectories, making it difficult to guarantee non-regression or to reason about failures across versions. We reframe agent improvement as \textbf{release engineering}: agents are treated as shippable artifacts, and improvement is externalized into a regression-aware release pipeline. We introduce \textbf{AgentDevel}, a release engineering pipeline that iteratively runs the current agent, produces implementation-blind, symptom-level quality signals from execution traces, synthesizes a single release candidate (RC) via executable diagnosis, and promotes it under flip-centered gating. AgentDevel features three core designs: (i) an implementation-blind LLM critic that characterizes failure appearances without accessing agent internals, (ii) script-based executable diagnosis that aggregates dominant symptom patterns and produces auditable engineering specifications, and (iii) flip-centered gating that prioritizes pass to fail regressions and fail to pass fixes as first-class evidence. Unlike population-based search or in-agent self-refinement, AgentDevel maintains a single canonical version line and emphasizes non-regression as a primary objective. Experiments on execution-heavy benchmarks demonstrate that AgentDevel yields stable improvements with significantly fewer regressions while producing reproducible, auditable artifacts. Overall, AgentDevel provides a practical development discipline for building, debugging, and releasing LLM agents as software development.

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2601.04620 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2601.04620 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2601.04620 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.