- Guiding the classification of hepatocellular carcinoma on 3D CT-scans using deep and handcrafted radiological features Hepatocellular carcinoma is the most spread primary liver cancer across the world (sim80\% of the liver tumors). The gold standard for HCC diagnosis is liver biopsy. However, in the clinical routine, expert radiologists provide a visual diagnosis by interpreting hepatic CT-scans according to a standardized protocol, the LI-RADS, which uses five radiological criteria with an associated decision tree. In this paper, we propose an automatic approach to predict histology-proven HCC from CT images in order to reduce radiologists' inter-variability. We first show that standard deep learning methods fail to accurately predict HCC from CT-scans on a challenging database, and propose a two-step approach inspired by the LI-RADS system to improve the performance. We achieve improvements from 6 to 18 points of AUC with respect to deep learning baselines trained with different architectures. We also provide clinical validation of our method, achieving results that outperform non-expert radiologists and are on par with expert ones. 7 authors · Jan 14
- RAD: Towards Trustworthy Retrieval-Augmented Multi-modal Clinical Diagnosis Clinical diagnosis is a highly specialized discipline requiring both domain expertise and strict adherence to rigorous guidelines. While current AI-driven medical research predominantly focuses on knowledge graphs or natural text pretraining paradigms to incorporate medical knowledge, these approaches primarily rely on implicitly encoded knowledge within model parameters, neglecting task-specific knowledge required by diverse downstream tasks. To address this limitation, we propose Retrieval-Augmented Diagnosis (RAD), a novel framework that explicitly injects external knowledge into multimodal models directly on downstream tasks. Specifically, RAD operates through three key mechanisms: retrieval and refinement of disease-centered knowledge from multiple medical sources, a guideline-enhanced contrastive loss that constrains the latent distance between multi-modal features and guideline knowledge, and the dual transformer decoder that employs guidelines as queries to steer cross-modal fusion, aligning the models with clinical diagnostic workflows from guideline acquisition to feature extraction and decision-making. Moreover, recognizing the lack of quantitative evaluation of interpretability for multimodal diagnostic models, we introduce a set of criteria to assess the interpretability from both image and text perspectives. Extensive evaluations across four datasets with different anatomies demonstrate RAD's generalizability, achieving state-of-the-art performance. Furthermore, RAD enables the model to concentrate more precisely on abnormal regions and critical indicators, ensuring evidence-based, trustworthy diagnosis. Our code is available at https://github.com/tdlhl/RAD. Fudan University · Sep 24