new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

PRISM: Robust VLM Alignment with Principled Reasoning for Integrated Safety in Multimodality

Safeguarding vision-language models (VLMs) is a critical challenge, as existing methods often suffer from over-defense, which harms utility, or rely on shallow alignment, failing to detect complex threats that require deep reasoning. To this end, we introduce PRISM (Principled Reasoning for Integrated Safety in Multimodality), a system2-like framework that aligns VLMs by embedding a structured, safety-aware reasoning process. Our framework consists of two key components: PRISM-CoT, a dataset that teaches safety-aware chain-of-thought reasoning, and PRISM-DPO, generated via Monte Carlo Tree Search (MCTS) to further refine this reasoning through Direct Preference Optimization to help obtain a delicate safety boundary. Comprehensive evaluations demonstrate PRISM's effectiveness, achieving remarkably low attack success rates including 0.15% on JailbreakV-28K for Qwen2-VL and 90% improvement over the previous best method on VLBreak for LLaVA-1.5. PRISM also exhibits strong robustness against adaptive attacks, significantly increasing computational costs for adversaries, and generalizes effectively to out-of-distribution challenges, reducing attack success rates to just 8.70% on the challenging multi-image MIS benchmark. Remarkably, this robust defense is achieved while preserving, and in some cases enhancing, model utility. To promote reproducibility, we have made our code, data, and model weights available at https://github.com/SaFoLab-WISC/PRISM.

  • 3 authors
·
Aug 25, 2025

AI Kill Switch for malicious web-based LLM agent

Recently, web-based Large Language Model (LLM) agents autonomously perform increasingly complex tasks, thereby bringing significant convenience. However, they also amplify the risks of malicious misuse cases such as unauthorized collection of personally identifiable information (PII), generation of socially divisive content, and even automated web hacking. To address these threats, we propose an AI Kill Switch technique that can immediately halt the operation of malicious web-based LLM agents. To achieve this, we introduce AutoGuard - the key idea is generating defensive prompts that trigger the safety mechanisms of malicious LLM agents. In particular, generated defense prompts are transparently embedded into the website's DOM so that they remain invisible to human users but can be detected by the crawling process of malicious agents, triggering its internal safety mechanisms to abort malicious actions once read. To evaluate our approach, we constructed a dedicated benchmark consisting of three representative malicious scenarios (PII collection, social rift content generation, and web hacking attempts). Experimental results show that the AutoGuard method achieves over 80% Defense Success Rate (DSR) on malicious agents, including GPT-4o, Claude-3, and Llama3.3-70B-Instruct. It also maintains strong performance, achieving around 90% DSR on GPT-5, GPT-4.1, and Gemini-2.5-Flash when used as the malicious agent, demonstrating robust generalization across models and scenarios. Through this research, we have demonstrated the controllability of web-based LLM agents across various scenarios and models, thereby contributing to the broader effort of AI control and safety.

  • 2 authors
·
Sep 25, 2025

Multi-metrics adaptively identifies backdoors in Federated learning

The decentralized and privacy-preserving nature of federated learning (FL) makes it vulnerable to backdoor attacks aiming to manipulate the behavior of the resulting model on specific adversary-chosen inputs. However, most existing defenses based on statistical differences take effect only against specific attacks, especially when the malicious gradients are similar to benign ones or the data are highly non-independent and identically distributed (non-IID). In this paper, we revisit the distance-based defense methods and discover that i) Euclidean distance becomes meaningless in high dimensions and ii) malicious gradients with diverse characteristics cannot be identified by a single metric. To this end, we present a simple yet effective defense strategy with multi-metrics and dynamic weighting to identify backdoors adaptively. Furthermore, our novel defense has no reliance on predefined assumptions over attack settings or data distributions and little impact on benign performance. To evaluate the effectiveness of our approach, we conduct comprehensive experiments on different datasets under various attack settings, where our method achieves the best defensive performance. For instance, we achieve the lowest backdoor accuracy of 3.06% under the difficult Edge-case PGD, showing significant superiority over previous defenses. The results also demonstrate that our method can be well-adapted to a wide range of non-IID degrees without sacrificing the benign performance.

  • 5 authors
·
Mar 12, 2023

A-MemGuard: A Proactive Defense Framework for LLM-Based Agent Memory

Large Language Model (LLM) agents use memory to learn from past interactions, enabling autonomous planning and decision-making in complex environments. However, this reliance on memory introduces a critical security risk: an adversary can inject seemingly harmless records into an agent's memory to manipulate its future behavior. This vulnerability is characterized by two core aspects: First, the malicious effect of injected records is only activated within a specific context, making them hard to detect when individual memory entries are audited in isolation. Second, once triggered, the manipulation can initiate a self-reinforcing error cycle: the corrupted outcome is stored as precedent, which not only amplifies the initial error but also progressively lowers the threshold for similar attacks in the future. To address these challenges, we introduce A-MemGuard (Agent-Memory Guard), the first proactive defense framework for LLM agent memory. The core idea of our work is the insight that memory itself must become both self-checking and self-correcting. Without modifying the agent's core architecture, A-MemGuard combines two mechanisms: (1) consensus-based validation, which detects anomalies by comparing reasoning paths derived from multiple related memories and (2) a dual-memory structure, where detected failures are distilled into ``lessons'' stored separately and consulted before future actions, breaking error cycles and enabling adaptation. Comprehensive evaluations on multiple benchmarks show that A-MemGuard effectively cuts attack success rates by over 95% while incurring a minimal utility cost. This work shifts LLM memory security from static filtering to a proactive, experience-driven model where defenses strengthen over time. Our code is available in https://github.com/TangciuYueng/AMemGuard

  • 10 authors
·
Sep 29, 2025

In defense of parameter sharing for model-compression

When considering a model architecture, there are several ways to reduce its memory footprint. Historically, popular approaches included selecting smaller architectures and creating sparse networks through pruning. More recently, randomized parameter-sharing (RPS) methods have gained traction for model compression at start of training. In this paper, we comprehensively assess the trade-off between memory and accuracy across RPS, pruning techniques, and building smaller models. Our findings demonstrate that RPS, which is both data and model-agnostic, consistently outperforms/matches smaller models and all moderately informed pruning strategies, such as MAG, SNIP, SYNFLOW, and GRASP, across the entire compression range. This advantage becomes particularly pronounced in higher compression scenarios. Notably, even when compared to highly informed pruning techniques like Lottery Ticket Rewinding (LTR), RPS exhibits superior performance in high compression settings. This points out inherent capacity advantage that RPS enjoys over sparse models. Theoretically, we establish RPS as a superior technique in terms of memory-efficient representation when compared to pruning for linear models. This paper argues in favor of paradigm shift towards RPS based models. During our rigorous evaluation of RPS, we identified issues in the state-of-the-art RPS technique ROAST, specifically regarding stability (ROAST's sensitivity to initialization hyperparameters, often leading to divergence) and Pareto-continuity (ROAST's inability to recover the accuracy of the original model at zero compression). We provably address both of these issues. We refer to the modified RPS, which incorporates our improvements, as STABLE-RPS.

  • 2 authors
·
Oct 17, 2023

Jatmo: Prompt Injection Defense by Task-Specific Finetuning

Large Language Models (LLMs) are attracting significant research attention due to their instruction-following abilities, allowing users and developers to leverage LLMs for a variety of tasks. However, LLMs are vulnerable to prompt-injection attacks: a class of attacks that hijack the model's instruction-following abilities, changing responses to prompts to undesired, possibly malicious ones. In this work, we introduce Jatmo, a method for generating task-specific models resilient to prompt-injection attacks. Jatmo leverages the fact that LLMs can only follow instructions once they have undergone instruction tuning. It harnesses a teacher instruction-tuned model to generate a task-specific dataset, which is then used to fine-tune a base model (i.e., a non-instruction-tuned model). Jatmo only needs a task prompt and a dataset of inputs for the task: it uses the teacher model to generate outputs. For situations with no pre-existing datasets, Jatmo can use a single example, or in some cases none at all, to produce a fully synthetic dataset. Our experiments on six tasks show that Jatmo models provide the same quality of outputs on their specific task as standard LLMs, while being resilient to prompt injections. The best attacks succeeded in less than 0.5% of cases against our models, versus over 90% success rate against GPT-3.5-Turbo. We release Jatmo at https://github.com/wagner-group/prompt-injection-defense.

  • 8 authors
·
Dec 29, 2023

Reasoned Safety Alignment: Ensuring Jailbreak Defense via Answer-Then-Check

As large language models (LLMs) continue to advance in capabilities, ensuring their safety against jailbreak attacks remains a critical challenge. In this paper, we introduce a novel safety alignment approach called Answer-Then-Check, which enhances LLM robustness against malicious prompts by applying thinking ability to mitigate jailbreaking problems before producing a final answer to the user. Our method enables models to directly answer the question in their thought and then critically evaluate its safety before deciding whether to provide it. To implement this approach, we construct the Reasoned Safety Alignment (ReSA) dataset, comprising 80K examples that teach models to reason through direct responses and then analyze their safety. Experimental results demonstrate that our approach achieves the Pareto frontier with superior safety capability while decreasing over-refusal rates on over-refusal benchmarks. Notably, the model fine-tuned with ReSA maintains general reasoning capabilities on benchmarks like MMLU, MATH500, and HumanEval. Besides, our method equips models with the ability to perform safe completion. Unlike post-hoc methods that can only reject harmful queries, our model can provide helpful and safe alternative responses for sensitive topics (e.g., self-harm). Furthermore, we discover that training on a small subset of just 500 examples can achieve comparable performance to using the full dataset, suggesting that safety alignment may require less data than previously assumed.

  • 4 authors
·
Sep 15, 2025

The VLLM Safety Paradox: Dual Ease in Jailbreak Attack and Defense

The vulnerability of Vision Large Language Models (VLLMs) to jailbreak attacks appears as no surprise. However, recent defense mechanisms against these attacks have reached near-saturation performance on benchmark evaluations, often with minimal effort. This dual high performance in both attack and defense raises a fundamental and perplexing paradox. To gain a deep understanding of this issue and thus further help strengthen the trustworthiness of VLLMs, this paper makes three key contributions: i) One tentative explanation for VLLMs being prone to jailbreak attacks--inclusion of vision inputs, as well as its in-depth analysis. ii) The recognition of a largely ignored problem in existing defense mechanisms--over-prudence. The problem causes these defense methods to exhibit unintended abstention, even in the presence of benign inputs, thereby undermining their reliability in faithfully defending against attacks. iii) A simple safety-aware method--LLM-Pipeline. Our method repurposes the more advanced guardrails of LLMs on the shelf, serving as an effective alternative detector prior to VLLM response. Last but not least, we find that the two representative evaluation methods for jailbreak often exhibit chance agreement. This limitation makes it potentially misleading when evaluating attack strategies or defense mechanisms. We believe the findings from this paper offer useful insights to rethink the foundational development of VLLM safety with respect to benchmark datasets, defense strategies, and evaluation methods.

  • 4 authors
·
Nov 13, 2024

Rethinking Adversarial Policies: A Generalized Attack Formulation and Provable Defense in RL

Most existing works focus on direct perturbations to the victim's state/action or the underlying transition dynamics to demonstrate the vulnerability of reinforcement learning agents to adversarial attacks. However, such direct manipulations may not be always realizable. In this paper, we consider a multi-agent setting where a well-trained victim agent nu is exploited by an attacker controlling another agent alpha with an adversarial policy. Previous models do not account for the possibility that the attacker may only have partial control over alpha or that the attack may produce easily detectable "abnormal" behaviors. Furthermore, there is a lack of provably efficient defenses against these adversarial policies. To address these limitations, we introduce a generalized attack framework that has the flexibility to model to what extent the adversary is able to control the agent, and allows the attacker to regulate the state distribution shift and produce stealthier adversarial policies. Moreover, we offer a provably efficient defense with polynomial convergence to the most robust victim policy through adversarial training with timescale separation. This stands in sharp contrast to supervised learning, where adversarial training typically provides only empirical defenses. Using the Robosumo competition experiments, we show that our generalized attack formulation results in much stealthier adversarial policies when maintaining the same winning rate as baselines. Additionally, our adversarial training approach yields stable learning dynamics and less exploitable victim policies.

  • 4 authors
·
May 26, 2023

You Can't Eat Your Cake and Have It Too: The Performance Degradation of LLMs with Jailbreak Defense

With the rise of generative large language models (LLMs) like LLaMA and ChatGPT, these models have significantly transformed daily life and work by providing advanced insights. However, as jailbreak attacks continue to circumvent built-in safety mechanisms, exploiting carefully crafted scenarios or tokens, the safety risks of LLMs have come into focus. While numerous defense strategies--such as prompt detection, modification, and model fine-tuning--have been proposed to counter these attacks, a critical question arises: do these defenses compromise the utility and usability of LLMs for legitimate users? Existing research predominantly focuses on the effectiveness of defense strategies without thoroughly examining their impact on performance, leaving a gap in understanding the trade-offs between LLM safety and performance. Our research addresses this gap by conducting a comprehensive study on the utility degradation, safety elevation, and exaggerated-safety escalation of LLMs with jailbreak defense strategies. We propose USEBench, a novel benchmark designed to evaluate these aspects, along with USEIndex, a comprehensive metric for assessing overall model performance. Through experiments on seven state-of-the-art LLMs, we found that mainstream jailbreak defenses fail to ensure both safety and performance simultaneously. Although model-finetuning performs the best overall, their effectiveness varies across LLMs. Furthermore, vertical comparisons reveal that developers commonly prioritize performance over safety when iterating or fine-tuning their LLMs.

  • 8 authors
·
Jan 21, 2025

X-Boundary: Establishing Exact Safety Boundary to Shield LLMs from Multi-Turn Jailbreaks without Compromising Usability

Despite the rapid development of safety alignment techniques for LLMs, defending against multi-turn jailbreaks is still a challenging task. In this paper, we conduct a comprehensive comparison, revealing that some existing defense methods can improve the robustness of LLMs against multi-turn jailbreaks but compromise usability, i.e., reducing general capabilities or causing the over-refusal problem. From the perspective of mechanism interpretability of LLMs, we discover that these methods fail to establish a boundary that exactly distinguishes safe and harmful feature representations. Therefore, boundary-safe representations close to harmful representations are inevitably disrupted, leading to a decline in usability. To address this issue, we propose X-Boundary to push harmful representations away from boundary-safe representations and obtain an exact distinction boundary. In this way, harmful representations can be precisely erased without disrupting safe ones. Experimental results show that X-Boundary achieves state-of-the-art defense performance against multi-turn jailbreaks, while reducing the over-refusal rate by about 20% and maintaining nearly complete general capability. Furthermore, we theoretically prove and empirically verify that X-Boundary can accelerate the convergence process during training. Please see our code at: https://github.com/AI45Lab/X-Boundary.

  • 5 authors
·
Feb 14, 2025

Infighting in the Dark: Multi-Label Backdoor Attack in Federated Learning

Federated Learning (FL), a privacy-preserving decentralized machine learning framework, has been shown to be vulnerable to backdoor attacks. Current research primarily focuses on the Single-Label Backdoor Attack (SBA), wherein adversaries share a consistent target. However, a critical fact is overlooked: adversaries may be non-cooperative, have distinct targets, and operate independently, which exhibits a more practical scenario called Multi-Label Backdoor Attack (MBA). Unfortunately, prior works are ineffective in the MBA scenario since non-cooperative attackers exclude each other. In this work, we conduct an in-depth investigation to uncover the inherent constraints of the exclusion: similar backdoor mappings are constructed for different targets, resulting in conflicts among backdoor functions. To address this limitation, we propose Mirage, the first non-cooperative MBA strategy in FL that allows attackers to inject effective and persistent backdoors into the global model without collusion by constructing in-distribution (ID) backdoor mapping. Specifically, we introduce an adversarial adaptation method to bridge the backdoor features and the target distribution in an ID manner. Additionally, we further leverage a constrained optimization method to ensure the ID mapping survives in the global training dynamics. Extensive evaluations demonstrate that Mirage outperforms various state-of-the-art attacks and bypasses existing defenses, achieving an average ASR greater than 97\% and maintaining over 90\% after 900 rounds. This work aims to alert researchers to this potential threat and inspire the design of effective defense mechanisms. Code has been made open-source.

  • 4 authors
·
Sep 29, 2024

DeepZero: Scaling up Zeroth-Order Optimization for Deep Model Training

Zeroth-order (ZO) optimization has become a popular technique for solving machine learning (ML) problems when first-order (FO) information is difficult or impossible to obtain. However, the scalability of ZO optimization remains an open problem: Its use has primarily been limited to relatively small-scale ML problems, such as sample-wise adversarial attack generation. To our best knowledge, no prior work has demonstrated the effectiveness of ZO optimization in training deep neural networks (DNNs) without a significant decrease in performance. To overcome this roadblock, we develop DeepZero, a principled ZO deep learning (DL) framework that can scale ZO optimization to DNN training from scratch through three primary innovations. First, we demonstrate the advantages of coordinatewise gradient estimation (CGE) over randomized vector-wise gradient estimation in training accuracy and computational efficiency. Second, we propose a sparsityinduced ZO training protocol that extends the model pruning methodology using only finite differences to explore and exploit the sparse DL prior in CGE. Third, we develop the methods of feature reuse and forward parallelization to advance the practical implementations of ZO training. Our extensive experiments show that DeepZero achieves state-of-the-art (SOTA) accuracy on ResNet-20 trained on CIFAR-10, approaching FO training performance for the first time. Furthermore, we show the practical utility of DeepZero in applications of certified adversarial defense and DL-based partial differential equation error correction, achieving 10-20% improvement over SOTA. We believe our results will inspire future research on scalable ZO optimization and contribute to advancing DL with black box. Codes are available at https://github.com/OPTML-Group/DeepZero.

  • 10 authors
·
Oct 3, 2023 2

A Safety and Security Framework for Real-World Agentic Systems

This paper introduces a dynamic and actionable framework for securing agentic AI systems in enterprise deployment. We contend that safety and security are not merely fixed attributes of individual models but also emergent properties arising from the dynamic interactions among models, orchestrators, tools, and data within their operating environments. We propose a new way of identification of novel agentic risks through the lens of user safety. Although, for traditional LLMs and agentic models in isolation, safety and security has a clear separation, through the lens of safety in agentic systems, they appear to be connected. Building on this foundation, we define an operational agentic risk taxonomy that unifies traditional safety and security concerns with novel, uniquely agentic risks, including tool misuse, cascading action chains, and unintended control amplification among others. At the core of our approach is a dynamic agentic safety and security framework that operationalizes contextual agentic risk management by using auxiliary AI models and agents, with human oversight, to assist in contextual risk discovery, evaluation, and mitigation. We further address one of the most challenging aspects of safety and security of agentic systems: risk discovery through sandboxed, AI-driven red teaming. We demonstrate the framework effectiveness through a detailed case study of NVIDIA flagship agentic research assistant, AI-Q Research Assistant, showcasing practical, end-to-end safety and security evaluations in complex, enterprise-grade agentic workflows. This risk discovery phase finds novel agentic risks that are then contextually mitigated. We also release the dataset from our case study, containing traces of over 10,000 realistic attack and defense executions of the agentic workflow to help advance research in agentic safety.

  • 12 authors
·
Nov 26, 2025

Ranking Free RAG: Replacing Re-ranking with Selection in RAG for Sensitive Domains

Traditional Retrieval-Augmented Generation (RAG) pipelines rely on similarity-based retrieval and re-ranking, which depend on heuristics such as top-k, and lack explainability, interpretability, and robustness against adversarial content. To address this gap, we propose a novel method METEORA that replaces re-ranking in RAG with a rationale-driven selection approach. METEORA operates in two stages. First, a general-purpose LLM is preference-tuned to generate rationales conditioned on the input query using direct preference optimization. These rationales guide the evidence chunk selection engine, which selects relevant chunks in three stages: pairing individual rationales with corresponding retrieved chunks for local relevance, global selection with elbow detection for adaptive cutoff, and context expansion via neighboring chunks. This process eliminates the need for top-k heuristics. The rationales are also used for consistency check using a Verifier LLM to detect and filter poisoned or misleading content for safe generation. The framework provides explainable and interpretable evidence flow by using rationales consistently across both selection and verification. Our evaluation across six datasets spanning legal, financial, and academic research domains shows that METEORA improves generation accuracy by 33.34% while using approximately 50% fewer chunks than state-of-the-art re-ranking methods. In adversarial settings, METEORA significantly improves the F1 score from 0.10 to 0.44 over the state-of-the-art perplexity-based defense baseline, demonstrating strong resilience to poisoning attacks. Code available at: https://anonymous.4open.science/r/METEORA-DC46/README.md

  • 6 authors
·
May 21, 2025

PromptSleuth: Detecting Prompt Injection via Semantic Intent Invariance

Large Language Models (LLMs) are increasingly integrated into real-world applications, from virtual assistants to autonomous agents. However, their flexibility also introduces new attack vectors-particularly Prompt Injection (PI), where adversaries manipulate model behavior through crafted inputs. As attackers continuously evolve with paraphrased, obfuscated, and even multi-task injection strategies, existing benchmarks are no longer sufficient to capture the full spectrum of emerging threats. To address this gap, we construct a new benchmark that systematically extends prior efforts. Our benchmark subsumes the two widely-used existing ones while introducing new manipulation techniques and multi-task scenarios, thereby providing a more comprehensive evaluation setting. We find that existing defenses, though effective on their original benchmarks, show clear weaknesses under our benchmark, underscoring the need for more robust solutions. Our key insight is that while attack forms may vary, the adversary's intent-injecting an unauthorized task-remains invariant. Building on this observation, we propose PromptSleuth, a semantic-oriented defense framework that detects prompt injection by reasoning over task-level intent rather than surface features. Evaluated across state-of-the-art benchmarks, PromptSleuth consistently outperforms existing defense while maintaining comparable runtime and cost efficiency. These results demonstrate that intent-based semantic reasoning offers a robust, efficient, and generalizable strategy for defending LLMs against evolving prompt injection threats.

  • 3 authors
·
Aug 28, 2025

PandaGuard: Systematic Evaluation of LLM Safety against Jailbreaking Attacks

Large language models (LLMs) have achieved remarkable capabilities but remain vulnerable to adversarial prompts known as jailbreaks, which can bypass safety alignment and elicit harmful outputs. Despite growing efforts in LLM safety research, existing evaluations are often fragmented, focused on isolated attack or defense techniques, and lack systematic, reproducible analysis. In this work, we introduce PandaGuard, a unified and modular framework that models LLM jailbreak safety as a multi-agent system comprising attackers, defenders, and judges. Our framework implements 19 attack methods and 12 defense mechanisms, along with multiple judgment strategies, all within a flexible plugin architecture supporting diverse LLM interfaces, multiple interaction modes, and configuration-driven experimentation that enhances reproducibility and practical deployment. Built on this framework, we develop PandaBench, a comprehensive benchmark that evaluates the interactions between these attack/defense methods across 49 LLMs and various judgment approaches, requiring over 3 billion tokens to execute. Our extensive evaluation reveals key insights into model vulnerabilities, defense cost-performance trade-offs, and judge consistency. We find that no single defense is optimal across all dimensions and that judge disagreement introduces nontrivial variance in safety assessments. We release the code, configurations, and evaluation results to support transparent and reproducible research in LLM safety.

  • 11 authors
·
May 19, 2025

Omni-SafetyBench: A Benchmark for Safety Evaluation of Audio-Visual Large Language Models

The rise of Omni-modal Large Language Models (OLLMs), which integrate visual and auditory processing with text, necessitates robust safety evaluations to mitigate harmful outputs. However, no dedicated benchmarks currently exist for OLLMs, and prior benchmarks designed for other LLMs lack the ability to assess safety performance under audio-visual joint inputs or cross-modal safety consistency. To fill this gap, we introduce Omni-SafetyBench, the first comprehensive parallel benchmark for OLLM safety evaluation, featuring 24 modality combinations and variations with 972 samples each, including dedicated audio-visual harm cases. Considering OLLMs' comprehension challenges with complex omni-modal inputs and the need for cross-modal consistency evaluation, we propose tailored metrics: a Safety-score based on conditional Attack Success Rate (C-ASR) and Refusal Rate (C-RR) to account for comprehension failures, and a Cross-Modal Safety Consistency Score (CMSC-score) to measure consistency across modalities. Evaluating 6 open-source and 4 closed-source OLLMs reveals critical vulnerabilities: (1) no model excels in both overall safety and consistency, with only 3 models achieving over 0.6 in both metrics and top performer scoring around 0.8; (2) safety defenses weaken with complex inputs, especially audio-visual joints; (3) severe weaknesses persist, with some models scoring as low as 0.14 on specific modalities. Our benchmark and metrics highlight urgent needs for enhanced OLLM safety, providing a foundation for future improvements.

  • 12 authors
·
Aug 10, 2025

Model-tuning Via Prompts Makes NLP Models Adversarially Robust

In recent years, NLP practitioners have converged on the following practice: (i) import an off-the-shelf pretrained (masked) language model; (ii) append a multilayer perceptron atop the CLS token's hidden representation (with randomly initialized weights); and (iii) fine-tune the entire model on a downstream task (MLP-FT). This procedure has produced massive gains on standard NLP benchmarks, but these models remain brittle, even to mild adversarial perturbations. In this work, we demonstrate surprising gains in adversarial robustness enjoyed by Model-tuning Via Prompts (MVP), an alternative method of adapting to downstream tasks. Rather than appending an MLP head to make output prediction, MVP appends a prompt template to the input, and makes prediction via text infilling/completion. Across 5 NLP datasets, 4 adversarial attacks, and 3 different models, MVP improves performance against adversarial substitutions by an average of 8% over standard methods and even outperforms adversarial training-based state-of-art defenses by 3.5%. By combining MVP with adversarial training, we achieve further improvements in adversarial robustness while maintaining performance on unperturbed examples. Finally, we conduct ablations to investigate the mechanism underlying these gains. Notably, we find that the main causes of vulnerability of MLP-FT can be attributed to the misalignment between pre-training and fine-tuning tasks, and the randomly initialized MLP parameters.

  • 5 authors
·
Mar 13, 2023

The Trojan Knowledge: Bypassing Commercial LLM Guardrails via Harmless Prompt Weaving and Adaptive Tree Search

Large language models (LLMs) remain vulnerable to jailbreak attacks that bypass safety guardrails to elicit harmful outputs. Existing approaches overwhelmingly operate within the prompt-optimization paradigm: whether through traditional algorithmic search or recent agent-based workflows, the resulting prompts typically retain malicious semantic signals that modern guardrails are primed to detect. In contrast, we identify a deeper, largely overlooked vulnerability stemming from the highly interconnected nature of an LLM's internal knowledge. This structure allows harmful objectives to be realized by weaving together sequences of benign sub-queries, each of which individually evades detection. To exploit this loophole, we introduce the Correlated Knowledge Attack Agent (CKA-Agent), a dynamic framework that reframes jailbreaking as an adaptive, tree-structured exploration of the target model's knowledge base. The CKA-Agent issues locally innocuous queries, uses model responses to guide exploration across multiple paths, and ultimately assembles the aggregated information to achieve the original harmful objective. Evaluated across state-of-the-art commercial LLMs (Gemini2.5-Flash/Pro, GPT-oss-120B, Claude-Haiku-4.5), CKA-Agent consistently achieves over 95% success rates even against strong guardrails, underscoring the severity of this vulnerability and the urgent need for defenses against such knowledge-decomposition attacks. Our codes are available at https://github.com/Graph-COM/CKA-Agent.

  • 10 authors
·
Dec 1, 2025

Reliable Representations Make A Stronger Defender: Unsupervised Structure Refinement for Robust GNN

Benefiting from the message passing mechanism, Graph Neural Networks (GNNs) have been successful on flourish tasks over graph data. However, recent studies have shown that attackers can catastrophically degrade the performance of GNNs by maliciously modifying the graph structure. A straightforward solution to remedy this issue is to model the edge weights by learning a metric function between pairwise representations of two end nodes, which attempts to assign low weights to adversarial edges. The existing methods use either raw features or representations learned by supervised GNNs to model the edge weights. However, both strategies are faced with some immediate problems: raw features cannot represent various properties of nodes (e.g., structure information), and representations learned by supervised GNN may suffer from the poor performance of the classifier on the poisoned graph. We need representations that carry both feature information and as mush correct structure information as possible and are insensitive to structural perturbations. To this end, we propose an unsupervised pipeline, named STABLE, to optimize the graph structure. Finally, we input the well-refined graph into a downstream classifier. For this part, we design an advanced GCN that significantly enhances the robustness of vanilla GCN without increasing the time complexity. Extensive experiments on four real-world graph benchmarks demonstrate that STABLE outperforms the state-of-the-art methods and successfully defends against various attacks.

  • 7 authors
·
Jun 30, 2022

OCCULT: Evaluating Large Language Models for Offensive Cyber Operation Capabilities

The prospect of artificial intelligence (AI) competing in the adversarial landscape of cyber security has long been considered one of the most impactful, challenging, and potentially dangerous applications of AI. Here, we demonstrate a new approach to assessing AI's progress towards enabling and scaling real-world offensive cyber operations (OCO) tactics in use by modern threat actors. We detail OCCULT, a lightweight operational evaluation framework that allows cyber security experts to contribute to rigorous and repeatable measurement of the plausible cyber security risks associated with any given large language model (LLM) or AI employed for OCO. We also prototype and evaluate three very different OCO benchmarks for LLMs that demonstrate our approach and serve as examples for building benchmarks under the OCCULT framework. Finally, we provide preliminary evaluation results to demonstrate how this framework allows us to move beyond traditional all-or-nothing tests, such as those crafted from educational exercises like capture-the-flag environments, to contextualize our indicators and warnings in true cyber threat scenarios that present risks to modern infrastructure. We find that there has been significant recent advancement in the risks of AI being used to scale realistic cyber threats. For the first time, we find a model (DeepSeek-R1) is capable of correctly answering over 90% of challenging offensive cyber knowledge tests in our Threat Actor Competency Test for LLMs (TACTL) multiple-choice benchmarks. We also show how Meta's Llama and Mistral's Mixtral model families show marked performance improvements over earlier models against our benchmarks where LLMs act as offensive agents in MITRE's high-fidelity offensive and defensive cyber operations simulation environment, CyberLayer.

  • 8 authors
·
Feb 18, 2025