new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 18

Seeing Isn't Always Believing: Analysis of Grad-CAM Faithfulness and Localization Reliability in Lung Cancer CT Classification

Explainable Artificial Intelligence (XAI) techniques, such as Gradient-weighted Class Activation Mapping (Grad-CAM), have become indispensable for visualizing the reasoning process of deep neural networks in medical image analysis. Despite their popularity, the faithfulness and reliability of these heatmap-based explanations remain under scrutiny. This study critically investigates whether Grad-CAM truly represents the internal decision-making of deep models trained for lung cancer image classification. Using the publicly available IQ-OTH/NCCD dataset, we evaluate five representative architectures: ResNet-50, ResNet-101, DenseNet-161, EfficientNet-B0, and ViT-Base-Patch16-224, to explore model-dependent variations in Grad-CAM interpretability. We introduce a quantitative evaluation framework that combines localization accuracy, perturbation-based faithfulness, and explanation consistency to assess Grad-CAM reliability across architectures. Experimental findings reveal that while Grad-CAM effectively highlights salient tumor regions in most convolutional networks, its interpretive fidelity significantly degrades for Vision Transformer models due to non-local attention behavior. Furthermore, cross-model comparisons indicate substantial variability in saliency localization, implying that Grad-CAM explanations may not always correspond to the true diagnostic evidence used by the networks. This work exposes critical limitations of current saliency-based XAI approaches in medical imaging and emphasizes the need for model-aware interpretability methods that are both computationally sound and clinically meaningful. Our findings aim to inspire a more cautious and rigorous adoption of visual explanation tools in medical AI, urging the community to rethink what it truly means to "trust" a model's explanation.

  • 1 authors
·
Jan 19

ACAM-KD: Adaptive and Cooperative Attention Masking for Knowledge Distillation

Dense visual prediction tasks, such as detection and segmentation, are crucial for time-critical applications (e.g., autonomous driving and video surveillance). While deep models achieve strong performance, their efficiency remains a challenge. Knowledge distillation (KD) is an effective model compression technique, but existing feature-based KD methods rely on static, teacher-driven feature selection, failing to adapt to the student's evolving learning state or leverage dynamic student-teacher interactions. To address these limitations, we propose Adaptive student-teacher Cooperative Attention Masking for Knowledge Distillation (ACAM-KD), which introduces two key components: (1) Student-Teacher Cross-Attention Feature Fusion (STCA-FF), which adaptively integrates features from both models for a more interactive distillation process, and (2) Adaptive Spatial-Channel Masking (ASCM), which dynamically generates importance masks to enhance both spatial and channel-wise feature selection. Unlike conventional KD methods, ACAM-KD adapts to the student's evolving needs throughout the entire distillation process. Extensive experiments on multiple benchmarks validate its effectiveness. For instance, on COCO2017, ACAM-KD improves object detection performance by up to 1.4 mAP over the state-of-the-art when distilling a ResNet-50 student from a ResNet-101 teacher. For semantic segmentation on Cityscapes, it boosts mIoU by 3.09 over the baseline with DeepLabV3-MobileNetV2 as the student model.

  • 2 authors
·
Mar 8, 2025 1