1 Terminology-Aware Translation with Constrained Decoding and Large Language Model Prompting Terminology correctness is important in the downstream application of machine translation, and a prevalent way to ensure this is to inject terminology constraints into a translation system. In our submission to the WMT 2023 terminology translation task, we adopt a translate-then-refine approach which can be domain-independent and requires minimal manual efforts. We annotate random source words with pseudo-terminology translations obtained from word alignment to first train a terminology-aware model. Further, we explore two post-processing methods. First, we use an alignment process to discover whether a terminology constraint has been violated, and if so, we re-decode with the violating word negatively constrained. Alternatively, we leverage a large language model to refine a hypothesis by providing it with terminology constraints. Results show that our terminology-aware model learns to incorporate terminologies effectively, and the large language model refinement process can further improve terminology recall. 2 authors · Oct 9, 2023
- TAT-R1: Terminology-Aware Translation with Reinforcement Learning and Word Alignment Recently, deep reasoning large language models(LLMs) like DeepSeek-R1 have made significant progress in tasks such as mathematics and coding. Inspired by this, several studies have employed reinforcement learning(RL) to enhance models' deep reasoning capabilities and improve machine translation(MT) quality. However, the terminology translation, an essential task in MT, remains unexplored in deep reasoning LLMs. In this paper, we propose TAT-R1, a terminology-aware translation model trained with reinforcement learning and word alignment. Specifically, we first extract the keyword translation pairs using a word alignment model. Then we carefully design three types of rule-based alignment rewards with the extracted alignment relationships. With those alignment rewards, the RL-trained translation model can learn to focus on the accurate translation of key information, including terminology in the source text. Experimental results show the effectiveness of TAT-R1. Our model significantly improves terminology translation accuracy compared to the baseline models while maintaining comparable performance on general translation tasks. In addition, we conduct detailed ablation studies of the DeepSeek-R1-like training paradigm for machine translation and reveal several key findings. 4 authors · May 27, 2025
- Efficient Technical Term Translation: A Knowledge Distillation Approach for Parenthetical Terminology Translation This paper addresses the challenge of accurately translating technical terms, which are crucial for clear communication in specialized fields. We introduce the Parenthetical Terminology Translation (PTT) task, designed to mitigate potential inaccuracies by displaying the original term in parentheses alongside its translation. To implement this approach, we generated a representative PTT dataset using a collaborative approach with large language models and applied knowledge distillation to fine-tune traditional Neural Machine Translation (NMT) models and small-sized Large Language Models (sLMs). Additionally, we developed a novel evaluation metric to assess both overall translation accuracy and the correct parenthetical presentation of terms. Our findings indicate that sLMs did not consistently outperform NMT models, with fine-tuning proving more effective than few-shot prompting, particularly in models with continued pre-training in the target language. These insights contribute to the advancement of more reliable terminology translation methodologies. 5 authors · Oct 1, 2024
- Towards Global AI Inclusivity: A Large-Scale Multilingual Terminology Dataset (GIST) The field of machine translation has achieved significant advancements, yet domain-specific terminology translation, particularly in AI, remains challenging. We introduce GIST, a large-scale multilingual AI terminology dataset containing 5K terms extracted from top AI conference papers spanning 2000 to 2023. The terms are translated into Arabic, Chinese, French, Japanese, and Russian using a hybrid framework that combines LLMs for extraction with human expertise for translation. The dataset's quality is benchmarked against existing resources, demonstrating superior translation accuracy through crowdsourced evaluation. GIST is integrated into translation workflows using post-translation refinement methods that require no retraining, where LLM prompting consistently improves BLEU and COMET scores. A web demonstration on the ACL Anthology platform highlights its practical application, showcasing improved accessibility for non-English speakers. This work aims to address critical gaps in AI terminology resources and fosters global inclusivity and collaboration in AI research. 8 authors · Dec 24, 2024
- LexMatcher: Dictionary-centric Data Collection for LLM-based Machine Translation The fine-tuning of open-source large language models (LLMs) for machine translation has recently received considerable attention, marking a shift towards data-centric research from traditional neural machine translation. However, the area of data collection for instruction fine-tuning in machine translation remains relatively underexplored. In this paper, we present LexMatcher, a simple yet effective method for data collection that leverages bilingual dictionaries to generate a dataset, the design of which is driven by the coverage of senses found in these dictionaries. The dataset comprises a subset retrieved from an existing corpus and a smaller synthesized subset which supplements the infrequent senses of polysemous words. Utilizing LLaMA2 as our base model, our approach outperforms the established baselines on the WMT2022 test sets and also exhibits significant performance improvements in tasks related to word sense disambiguation and specialized terminology translation. These results underscore the effectiveness of LexMatcher in enhancing LLM-based machine translation. 5 authors · Jun 3, 2024
- LaTeXTrans: Structured LaTeX Translation with Multi-Agent Coordination Despite the remarkable progress of modern machine translation (MT) systems on general-domain texts, translating structured LaTeX-formatted documents remains a significant challenge. These documents typically interleave natural language with domain-specific syntax, such as mathematical equations, tables, figures, and cross-references, all of which must be accurately preserved to maintain semantic integrity and compilability. In this paper, we introduce LaTeXTrans, a collaborative multi-agent system designed to address this challenge. LaTeXTrans ensures format preservation, structural fidelity, and terminology consistency through six specialized agents: 1) a Parser that decomposes LaTeX into translation-friendly units via placeholder substitution and syntax filtering; 2) a Translator, Validator, Summarizer, and Terminology Extractor that work collaboratively to ensure context-aware, self-correcting, and terminology-consistent translations; 3) a Generator that reconstructs the translated content into well-structured LaTeX documents. Experimental results demonstrate that LaTeXTrans can outperform mainstream MT systems in both translation accuracy and structural fidelity, offering an effective and practical solution for translating LaTeX-formatted documents.The code of LaTeXTrans is available at https://github.com/NiuTrans/LaTeXTrans. 10 authors · Aug 26, 2025
- Instruction-tuned Large Language Models for Machine Translation in the Medical Domain Large Language Models (LLMs) have shown promising results on machine translation for high resource language pairs and domains. However, in specialised domains (e.g. medical) LLMs have shown lower performance compared to standard neural machine translation models. The consistency in the machine translation of terminology is crucial for users, researchers, and translators in specialised domains. In this study, we compare the performance between baseline LLMs and instruction-tuned LLMs in the medical domain. In addition, we introduce terminology from specialised medical dictionaries into the instruction formatted datasets for fine-tuning LLMs. The instruction-tuned LLMs significantly outperform the baseline models with automatic metrics. 1 authors · Aug 29, 2024
- Domain Terminology Integration into Machine Translation: Leveraging Large Language Models This paper discusses the methods that we used for our submissions to the WMT 2023 Terminology Shared Task for German-to-English (DE-EN), English-to-Czech (EN-CS), and Chinese-to-English (ZH-EN) language pairs. The task aims to advance machine translation (MT) by challenging participants to develop systems that accurately translate technical terms, ultimately enhancing communication and understanding in specialised domains. To this end, we conduct experiments that utilise large language models (LLMs) for two purposes: generating synthetic bilingual terminology-based data, and post-editing translations generated by an MT model through incorporating pre-approved terms. Our system employs a four-step process: (i) using an LLM to generate bilingual synthetic data based on the provided terminology, (ii) fine-tuning a generic encoder-decoder MT model, with a mix of the terminology-based synthetic data generated in the first step and a randomly sampled portion of the original generic training data, (iii) generating translations with the fine-tuned MT model, and (iv) finally, leveraging an LLM for terminology-constrained automatic post-editing of the translations that do not include the required terms. The results demonstrate the effectiveness of our proposed approach in improving the integration of pre-approved terms into translations. The number of terms incorporated into the translations of the blind dataset increases from an average of 36.67% with the generic model to an average of 72.88% by the end of the process. In other words, successful utilisation of terms nearly doubles across the three language pairs. 6 authors · Oct 22, 2023
- Data Augmentation and Terminology Integration for Domain-Specific Sinhala-English-Tamil Statistical Machine Translation Out of vocabulary (OOV) is a problem in the context of Machine Translation (MT) in low-resourced languages. When source and/or target languages are morphologically rich, it becomes even worse. Bilingual list integration is an approach to address the OOV problem. This allows more words to be translated than are in the training data. However, since bilingual lists contain words in the base form, it will not translate inflected forms for morphologically rich languages such as Sinhala and Tamil. This paper focuses on data augmentation techniques where bilingual lexicon terms are expanded based on case-markers with the objective of generating new words, to be used in Statistical machine Translation (SMT). This data augmentation technique for dictionary terms shows improved BLEU scores for Sinhala-English SMT. 3 authors · Nov 5, 2020
- Attention2Probability: Attention-Driven Terminology Probability Estimation for Robust Speech-to-Text System Recent advances in speech large language models (SLMs) have improved speech recognition and translation in general domains, but accurately generating domain-specific terms or neologisms remains challenging. To address this, we propose Attention2Probability: attention-driven terminology probability estimation for robust speech-to-text system, which is lightweight, flexible, and accurate. Attention2Probability converts cross-attention weights between speech and terminology into presence probabilities, and it further employs curriculum learning to enhance retrieval accuracy. Furthermore, to tackle the lack of data for speech-to-text tasks with terminology intervention, we create and release a new speech dataset with terminology to support future research in this area. Experimental results show that Attention2Probability significantly outperforms the VectorDB method on our test set. Specifically, its maximum recall rates reach 92.57% for Chinese and 86.83% for English. This high recall is achieved with a latency of only 8.71ms per query. Intervening in SLMs' recognition and translation tasks using Attention2Probability-retrieved terms improves terminology accuracy by 6-17%, while revealing that the current utilization of terminology by SLMs has limitations. 9 authors · Aug 26, 2025
1 Adaptive Machine Translation with Large Language Models Consistency is a key requirement of high-quality translation. It is especially important to adhere to pre-approved terminology and adapt to corrected translations in domain-specific projects. Machine translation (MT) has achieved significant progress in the area of domain adaptation. However, real-time adaptation remains challenging. Large-scale language models (LLMs) have recently shown interesting capabilities of in-context learning, where they learn to replicate certain input-output text generation patterns, without further fine-tuning. By feeding an LLM at inference time with a prompt that consists of a list of translation pairs, it can then simulate the domain and style characteristics. This work aims to investigate how we can utilize in-context learning to improve real-time adaptive MT. Our extensive experiments show promising results at translation time. For example, LLMs can adapt to a set of in-domain sentence pairs and/or terminology while translating a new sentence. We observe that the translation quality with few-shot in-context learning can surpass that of strong encoder-decoder MT systems, especially for high-resource languages. Moreover, we investigate whether we can combine MT from strong encoder-decoder models with fuzzy matches, which can further improve translation quality, especially for less supported languages. We conduct our experiments across five diverse language pairs, namely English-to-Arabic (EN-AR), English-to-Chinese (EN-ZH), English-to-French (EN-FR), English-to-Kinyarwanda (EN-RW), and English-to-Spanish (EN-ES). 4 authors · Jan 30, 2023
- Dressing the Imagination: A Dataset for AI-Powered Translation of Text into Fashion Outfits and A Novel KAN Adapter for Enhanced Feature Adaptation Specialized datasets that capture the fashion industry's rich language and styling elements can boost progress in AI-driven fashion design. We present FLORA, (Fashion Language Outfit Representation for Apparel Generation), the first comprehensive dataset containing 4,330 curated pairs of fashion outfits and corresponding textual descriptions. Each description utilizes industry-specific terminology and jargon commonly used by professional fashion designers, providing precise and detailed insights into the outfits. Hence, the dataset captures the delicate features and subtle stylistic elements necessary to create high-fidelity fashion designs. We demonstrate that fine-tuning generative models on the FLORA dataset significantly enhances their capability to generate accurate and stylistically rich images from textual descriptions of fashion sketches. FLORA will catalyze the creation of advanced AI models capable of comprehending and producing subtle, stylistically rich fashion designs. It will also help fashion designers and end-users to bring their ideas to life. As a second orthogonal contribution, we introduce NeRA (Nonlinear low-rank Expressive Representation Adapter), a novel adapter architecture based on Kolmogorov-Arnold Networks (KAN). Unlike traditional PEFT techniques such as LoRA, LoKR, DoRA, and LoHA that use MLP adapters, NeRA uses learnable spline-based nonlinear transformations, enabling superior modeling of complex semantic relationships, achieving strong fidelity, faster convergence and semantic alignment. Extensive experiments on our proposed FLORA and LAION-5B datasets validate the superiority of NeRA over existing adapters. We will open-source both the FLORA dataset and our implementation code. 5 authors · Nov 21, 2024
- Leveraging Domain Knowledge at Inference Time for LLM Translation: Retrieval versus Generation While large language models (LLMs) have been increasingly adopted for machine translation (MT), their performance for specialist domains such as medicine and law remains an open challenge. Prior work has shown that LLMs can be domain-adapted at test-time by retrieving targeted few-shot demonstrations or terminologies for inclusion in the prompt. Meanwhile, for general-purpose LLM MT, recent studies have found some success in generating similarly useful domain knowledge from an LLM itself, prior to translation. Our work studies domain-adapted MT with LLMs through a careful prompting setup, finding that demonstrations consistently outperform terminology, and retrieval consistently outperforms generation. We find that generating demonstrations with weaker models can close the gap with larger model's zero-shot performance. Given the effectiveness of demonstrations, we perform detailed analyses to understand their value. We find that domain-specificity is particularly important, and that the popular multi-domain benchmark is testing adaptation to a particular writing style more so than to a specific domain. 4 authors · Mar 6, 2025
- Language Modelling Approaches to Adaptive Machine Translation Consistency is a key requirement of high-quality translation. It is especially important to adhere to pre-approved terminology and adapt to corrected translations in domain-specific projects. Machine translation (MT) has achieved significant progress in the area of domain adaptation. However, in-domain data scarcity is common in translation settings, due to the lack of specialised datasets and terminology, or inconsistency and inaccuracy of available in-domain translations. In such scenarios where there is insufficient in-domain data to fine-tune MT models, producing translations that are consistent with the relevant context is challenging. While real-time adaptation can make use of smaller amounts of in-domain data to improve the translation on the fly, it remains challenging due to supported context limitations and efficiency constraints. Large language models (LLMs) have recently shown interesting capabilities of in-context learning, where they learn to replicate certain input-output text generation patterns, without further fine-tuning. Such capabilities have opened new horizons for domain-specific data augmentation and real-time adaptive MT. This work attempts to address two main relevant questions: 1) in scenarios involving human interaction and continuous feedback, can we employ language models to improve the quality of adaptive MT at inference time? and 2) in the absence of sufficient in-domain data, can we use pre-trained large-scale language models to improve the process of MT domain adaptation? 1 authors · Jan 25, 2024
1 BanglaSTEM: A Parallel Corpus for Technical Domain Bangla-English Translation Large language models work well for technical problem solving in English but perform poorly when the same questions are asked in Bangla. A simple solution would be to translate Bangla questions into English first and then use these models. However, existing Bangla-English translation systems struggle with technical terms. They often mistranslate specialized vocabulary, which changes the meaning of the problem and leads to wrong answers. We present BanglaSTEM, a dataset of 5,000 carefully selected Bangla-English sentence pairs from STEM fields including computer science, mathematics, physics, chemistry, and biology. We generated over 12,000 translations using language models and then used human evaluators to select the highest quality pairs that preserve technical terminology correctly. We train a T5-based translation model on BanglaSTEM and test it on two tasks: generating code and solving math problems. Our results show significant improvements in translation accuracy for technical content, making it easier for Bangla speakers to use English-focused language models effectively. Both the BanglaSTEM dataset and the trained translation model are publicly released at https://huggingface.co/reyazul/BanglaSTEM-T5. 4 authors · Nov 5, 2025
1 Lingua Custodia's participation at the WMT 2021 Machine Translation using Terminologies shared task This paper describes Lingua Custodia's submission to the WMT21 shared task on machine translation using terminologies. We consider three directions, namely English to French, Russian, and Chinese. We rely on a Transformer-based architecture as a building block, and we explore a method which introduces two main changes to the standard procedure to handle terminologies. The first one consists in augmenting the training data in such a way as to encourage the model to learn a copy behavior when it encounters terminology constraint terms. The second change is constraint token masking, whose purpose is to ease copy behavior learning and to improve model generalization. Empirical results show that our method satisfies most terminology constraints while maintaining high translation quality. 3 authors · Nov 3, 2021
- TransBench: Benchmarking Machine Translation for Industrial-Scale Applications Machine translation (MT) has become indispensable for cross-border communication in globalized industries like e-commerce, finance, and legal services, with recent advancements in large language models (LLMs) significantly enhancing translation quality. However, applying general-purpose MT models to industrial scenarios reveals critical limitations due to domain-specific terminology, cultural nuances, and stylistic conventions absent in generic benchmarks. Existing evaluation frameworks inadequately assess performance in specialized contexts, creating a gap between academic benchmarks and real-world efficacy. To address this, we propose a three-level translation capability framework: (1) Basic Linguistic Competence, (2) Domain-Specific Proficiency, and (3) Cultural Adaptation, emphasizing the need for holistic evaluation across these dimensions. We introduce TransBench, a benchmark tailored for industrial MT, initially targeting international e-commerce with 17,000 professionally translated sentences spanning 4 main scenarios and 33 language pairs. TransBench integrates traditional metrics (BLEU, TER) with Marco-MOS, a domain-specific evaluation model, and provides guidelines for reproducible benchmark construction. Our contributions include: (1) a structured framework for industrial MT evaluation, (2) the first publicly available benchmark for e-commerce translation, (3) novel metrics probing multi-level translation quality, and (4) open-sourced evaluation tools. This work bridges the evaluation gap, enabling researchers and practitioners to systematically assess and enhance MT systems for industry-specific needs. 16 authors · May 20, 2025
52 LLMs-in-the-loop Part-1: Expert Small AI Models for Bio-Medical Text Translation Machine translation is indispensable in healthcare for enabling the global dissemination of medical knowledge across languages. However, complex medical terminology poses unique challenges to achieving adequate translation quality and accuracy. This study introduces a novel "LLMs-in-the-loop" approach to develop supervised neural machine translation models optimized specifically for medical texts. While large language models (LLMs) have demonstrated powerful capabilities, this research shows that small, specialized models trained on high-quality in-domain (mostly synthetic) data can outperform even vastly larger LLMs. Custom parallel corpora in six languages were compiled from scientific articles, synthetically generated clinical documents, and medical texts. Our LLMs-in-the-loop methodology employs synthetic data generation, rigorous evaluation, and agent orchestration to enhance performance. We developed small medical translation models using the MarianMT base model. We introduce a new medical translation test dataset to standardize evaluation in this domain. Assessed using BLEU, METEOR, ROUGE, and BERT scores on this test set, our MarianMT-based models outperform Google Translate, DeepL, and GPT-4-Turbo. Results demonstrate that our LLMs-in-the-loop approach, combined with fine-tuning high-quality, domain-specific data, enables specialized models to outperform general-purpose and some larger systems. This research, part of a broader series on expert small models, paves the way for future healthcare-related AI developments, including deidentification and bio-medical entity extraction models. Our study underscores the potential of tailored neural translation models and the LLMs-in-the-loop methodology to advance the field through improved data generation, evaluation, agent, and modeling techniques. 3 authors · Jul 16, 2024 9
9 How "Real" is Your Real-Time Simultaneous Speech-to-Text Translation System? Simultaneous speech-to-text translation (SimulST) translates source-language speech into target-language text concurrently with the speaker's speech, ensuring low latency for better user comprehension. Despite its intended application to unbounded speech, most research has focused on human pre-segmented speech, simplifying the task and overlooking significant challenges. This narrow focus, coupled with widespread terminological inconsistencies, is limiting the applicability of research outcomes to real-world applications, ultimately hindering progress in the field. Our extensive literature review of 110 papers not only reveals these critical issues in current research but also serves as the foundation for our key contributions. We 1) define the steps and core components of a SimulST system, proposing a standardized terminology and taxonomy; 2) conduct a thorough analysis of community trends, and 3) offer concrete recommendations and future directions to bridge the gaps in existing literature, from evaluation frameworks to system architectures, for advancing the field towards more realistic and effective SimulST solutions. 4 authors · Dec 24, 2024 2
- Discourse Centric Evaluation of Machine Translation with a Densely Annotated Parallel Corpus Several recent papers claim human parity at sentence-level Machine Translation (MT), especially in high-resource languages. Thus, in response, the MT community has, in part, shifted its focus to document-level translation. Translating documents requires a deeper understanding of the structure and meaning of text, which is often captured by various kinds of discourse phenomena such as consistency, coherence, and cohesion. However, this renders conventional sentence-level MT evaluation benchmarks inadequate for evaluating the performance of context-aware MT systems. This paper presents a new dataset with rich discourse annotations, built upon the large-scale parallel corpus BWB introduced in Jiang et al. (2022). The new BWB annotation introduces four extra evaluation aspects, i.e., entity, terminology, coreference, and quotation, covering 15,095 entity mentions in both languages. Using these annotations, we systematically investigate the similarities and differences between the discourse structures of source and target languages, and the challenges they pose to MT. We discover that MT outputs differ fundamentally from human translations in terms of their latent discourse structures. This gives us a new perspective on the challenges and opportunities in document-level MT. We make our resource publicly available to spur future research in document-level MT and the generalization to other language translation tasks. 6 authors · May 18, 2023
96 DITING: A Multi-Agent Evaluation Framework for Benchmarking Web Novel Translation Large language models (LLMs) have substantially advanced machine translation (MT), yet their effectiveness in translating web novels remains unclear. Existing benchmarks rely on surface-level metrics that fail to capture the distinctive traits of this genre. To address these gaps, we introduce DITING, the first comprehensive evaluation framework for web novel translation, assessing narrative and cultural fidelity across six dimensions: idiom translation, lexical ambiguity, terminology localization, tense consistency, zero-pronoun resolution, and cultural safety, supported by over 18K expert-annotated Chinese-English sentence pairs. We further propose AgentEval, a reasoning-driven multi-agent evaluation framework that simulates expert deliberation to assess translation quality beyond lexical overlap, achieving the highest correlation with human judgments among seven tested automatic metrics. To enable metric comparison, we develop MetricAlign, a meta-evaluation dataset of 300 sentence pairs annotated with error labels and scalar quality scores. Comprehensive evaluation of fourteen open, closed, and commercial models reveals that Chinese-trained LLMs surpass larger foreign counterparts, and that DeepSeek-V3 delivers the most faithful and stylistically coherent translations. Our work establishes a new paradigm for exploring LLM-based web novel translation and provides public resources to advance future research. CLAIN-WHU · Oct 10, 2025 2
- TransLaw: Benchmarking Large Language Models in Multi-Agent Simulation of the Collaborative Translation Multi-agent systems empowered by large language models (LLMs) have demonstrated remarkable capabilities in a wide range of downstream applications, including machine translation. However, the potential of LLMs in translating Hong Kong legal judgments remains uncertain due to challenges such as intricate legal terminology, culturally embedded nuances, and strict linguistic structures. In this work, we introduce TransLaw, a novel multi-agent framework implemented for real-world Hong Kong case law translation. It employs three specialized agents, namely, Translator, Annotator, and Proofreader, to collaboratively produce translations for high accuracy in legal meaning, appropriateness in style, and adequate coherence and cohesion in structure. This framework supports customizable LLM configurations and achieves tremendous cost reduction compared to professional human translation services. We evaluated its performance using 13 open-source and commercial LLMs as agents and obtained interesting findings, including that it surpasses GPT-4o in legal semantic accuracy, structural coherence, and stylistic fidelity, yet trails human experts in contextualizing complex terminology and stylistic naturalness. Our platform website is available at CityUHK, and our bilingual judgment corpus used for the evaluation is available at Hugging Face. 4 authors · Jul 1, 2025
- How Well Do Large Reasoning Models Translate? A Comprehensive Evaluation for Multi-Domain Machine Translation Large language models (LLMs) have demonstrated strong performance in general-purpose machine translation, but their effectiveness in complex, domain-sensitive translation tasks remains underexplored. Recent advancements in Large Reasoning Models (LRMs), raise the question of whether structured reasoning can enhance translation quality across diverse domains. In this work, we compare the performance of LRMs with traditional LLMs across 15 representative domains and four translation directions. Our evaluation considers various factors, including task difficulty, input length, and terminology density. We use a combination of automatic metrics and an enhanced MQM-based evaluation hierarchy to assess translation quality. Our findings show that LRMs consistently outperform traditional LLMs in semantically complex domains, especially in long-text and high-difficulty translation scenarios. Moreover, domain-adaptive prompting strategies further improve performance by better leveraging the reasoning capabilities of LRMs. These results highlight the potential of structured reasoning in MDMT tasks and provide valuable insights for optimizing translation systems in domain-sensitive contexts. 5 authors · May 26, 2025
- HY-MT1.5 Technical Report In this report, we introduce our latest translation models, HY-MT1.5-1.8B and HY-MT1.5-7B, a new family of machine translation models developed through a holistic training framework tailored for high-performance translation. Our methodology orchestrates a multi-stage pipeline that integrates general and MT-oriented pre-training, supervised fine-tuning, on-policy distillation, and reinforcement learning. HY-MT1.5-1.8B, the 1.8B-parameter model demonstrates remarkable parameter efficiency, comprehensively outperforming significantly larger open-source baselines (e.g., Tower-Plus-72B, Qwen3-32B) and mainstream commercial APIs (e.g., Microsoft Translator, Doubao Translator) in standard Chinese-foreign and English-foreign tasks. It achieves approximately 90% of the performance of ultra-large proprietary models such as Gemini-3.0-Pro, while marginally trailing Gemini-3.0-Pro on WMT25 and Mandarin-minority language benchmarks, it maintains a substantial lead over other competing models. Furthermore, HY-MT1.5-7B establishes a new state-of-the-art for its size class, achieving 95% of Gemini-3.0-Pro's performance on Flores-200 and surpassing it on the challenging WMT25 and Mandarin-minority language test sets. Beyond standard translation, the HY-MT1.5 series supports advanced constraints, including terminology intervention, context-aware translation, and format preservation. Extensive empirical evaluations confirm that both models offer highly competitive, robust solutions for general and specialized translation tasks within their respective parameter scales. 5 authors · Dec 30, 2025
- Marito: Structuring and Building Open Multilingual Terminologies for South African NLP The critical lack of structured terminological data for South Africa's official languages hampers progress in multilingual NLP, despite the existence of numerous government and academic terminology lists. These valuable assets remain fragmented and locked in non-machine-readable formats, rendering them unusable for computational research and development. Marito addresses this challenge by systematically aggregating, cleaning, and standardising these scattered resources into open, interoperable datasets. We introduce the foundational Marito dataset, released under the equitable, Africa-centered NOODL framework. To demonstrate its immediate utility, we integrate the terminology into a Retrieval-Augmented Generation (RAG) pipeline. Experiments show substantial improvements in the accuracy and domain-specific consistency of English-to-Tshivenda machine translation for large language models. Marito provides a scalable foundation for developing robust and equitable NLP technologies, ensuring South Africa's rich linguistic diversity is represented in the digital age. 12 authors · Aug 5, 2025
- FRMT: A Benchmark for Few-Shot Region-Aware Machine Translation We present FRMT, a new dataset and evaluation benchmark for Few-shot Region-aware Machine Translation, a type of style-targeted translation. The dataset consists of professional translations from English into two regional variants each of Portuguese and Mandarin Chinese. Source documents are selected to enable detailed analysis of phenomena of interest, including lexically distinct terms and distractor terms. We explore automatic evaluation metrics for FRMT and validate their correlation with expert human evaluation across both region-matched and mismatched rating scenarios. Finally, we present a number of baseline models for this task, and offer guidelines for how researchers can train, evaluate, and compare their own models. Our dataset and evaluation code are publicly available: https://bit.ly/frmt-task 8 authors · Oct 1, 2022
- Bilex Rx: Lexical Data Augmentation for Massively Multilingual Machine Translation Neural machine translation (NMT) has progressed rapidly over the past several years, and modern models are able to achieve relatively high quality using only monolingual text data, an approach dubbed Unsupervised Machine Translation (UNMT). However, these models still struggle in a variety of ways, including aspects of translation that for a human are the easiest - for instance, correctly translating common nouns. This work explores a cheap and abundant resource to combat this problem: bilingual lexica. We test the efficacy of bilingual lexica in a real-world set-up, on 200-language translation models trained on web-crawled text. We present several findings: (1) using lexical data augmentation, we demonstrate sizable performance gains for unsupervised translation; (2) we compare several families of data augmentation, demonstrating that they yield similar improvements, and can be combined for even greater improvements; (3) we demonstrate the importance of carefully curated lexica over larger, noisier ones, especially with larger models; and (4) we compare the efficacy of multilingual lexicon data versus human-translated parallel data. Finally, we open-source GATITOS (available at https://github.com/google-research/url-nlp/tree/main/gatitos), a new multilingual lexicon for 26 low-resource languages, which had the highest performance among lexica in our experiments. 4 authors · Mar 27, 2023
- CUNI Submission to MRL 2023 Shared Task on Multi-lingual Multi-task Information Retrieval We present the Charles University system for the MRL~2023 Shared Task on Multi-lingual Multi-task Information Retrieval. The goal of the shared task was to develop systems for named entity recognition and question answering in several under-represented languages. Our solutions to both subtasks rely on the translate-test approach. We first translate the unlabeled examples into English using a multilingual machine translation model. Then, we run inference on the translated data using a strong task-specific model. Finally, we project the labeled data back into the original language. To keep the inferred tags on the correct positions in the original language, we propose a method based on scoring the candidate positions using a label-sensitive translation model. In both settings, we experiment with finetuning the classification models on the translated data. However, due to a domain mismatch between the development data and the shared task validation and test sets, the finetuned models could not outperform our baselines. 2 authors · Oct 25, 2023
- Towards Cross-Cultural Machine Translation with Retrieval-Augmented Generation from Multilingual Knowledge Graphs Translating text that contains entity names is a challenging task, as cultural-related references can vary significantly across languages. These variations may also be caused by transcreation, an adaptation process that entails more than transliteration and word-for-word translation. In this paper, we address the problem of cross-cultural translation on two fronts: (i) we introduce XC-Translate, the first large-scale, manually-created benchmark for machine translation that focuses on text that contains potentially culturally-nuanced entity names, and (ii) we propose KG-MT, a novel end-to-end method to integrate information from a multilingual knowledge graph into a neural machine translation model by leveraging a dense retrieval mechanism. Our experiments and analyses show that current machine translation systems and large language models still struggle to translate texts containing entity names, whereas KG-MT outperforms state-of-the-art approaches by a large margin, obtaining a 129% and 62% relative improvement compared to NLLB-200 and GPT-4, respectively. 6 authors · Oct 17, 2024
- Exploiting Similarities among Languages for Machine Translation Dictionaries and phrase tables are the basis of modern statistical machine translation systems. This paper develops a method that can automate the process of generating and extending dictionaries and phrase tables. Our method can translate missing word and phrase entries by learning language structures based on large monolingual data and mapping between languages from small bilingual data. It uses distributed representation of words and learns a linear mapping between vector spaces of languages. Despite its simplicity, our method is surprisingly effective: we can achieve almost 90% precision@5 for translation of words between English and Spanish. This method makes little assumption about the languages, so it can be used to extend and refine dictionaries and translation tables for any language pairs. 3 authors · Sep 16, 2013
- Automatic Ranking of MT Outputs using Approximations Since long, research on machine translation has been ongoing. Still, we do not get good translations from MT engines so developed. Manual ranking of these outputs tends to be very time consuming and expensive. Identifying which one is better or worse than the others is a very taxing task. In this paper, we show an approach which can provide automatic ranks to MT outputs (translations) taken from different MT Engines and which is based on N-gram approximations. We provide a solution where no human intervention is required for ranking systems. Further we also show the evaluations of our results which show equivalent results as that of human ranking. 3 authors · Nov 22, 2013
- mRAT-SQL+GAP:A Portuguese Text-to-SQL Transformer The translation of natural language questions to SQL queries has attracted growing attention, in particular in connection with transformers and similar language models. A large number of techniques are geared towards the English language; in this work, we thus investigated translation to SQL when input questions are given in the Portuguese language. To do so, we properly adapted state-of-the-art tools and resources. We changed the RAT-SQL+GAP system by relying on a multilingual BART model (we report tests with other language models), and we produced a translated version of the Spider dataset. Our experiments expose interesting phenomena that arise when non-English languages are targeted; in particular, it is better to train with original and translated training datasets together, even if a single target language is desired. This multilingual BART model fine-tuned with a double-size training dataset (English and Portuguese) achieved 83% of the baseline, making inferences for the Portuguese test dataset. This investigation can help other researchers to produce results in Machine Learning in a language different from English. Our multilingual ready version of RAT-SQL+GAP and the data are available, open-sourced as mRAT-SQL+GAP at: https://github.com/C4AI/gap-text2sql 2 authors · Oct 7, 2021
- PENELOPIE: Enabling Open Information Extraction for the Greek Language through Machine Translation In this paper we present our submission for the EACL 2021 SRW; a methodology that aims at bridging the gap between high and low-resource languages in the context of Open Information Extraction, showcasing it on the Greek language. The goals of this paper are twofold: First, we build Neural Machine Translation (NMT) models for English-to-Greek and Greek-to-English based on the Transformer architecture. Second, we leverage these NMT models to produce English translations of Greek text as input for our NLP pipeline, to which we apply a series of pre-processing and triple extraction tasks. Finally, we back-translate the extracted triples to Greek. We conduct an evaluation of both our NMT and OIE methods on benchmark datasets and demonstrate that our approach outperforms the current state-of-the-art for the Greek natural language. 3 authors · Mar 28, 2021
- SemRe-Rank: Improving Automatic Term Extraction By Incorporating Semantic Relatedness With Personalised PageRank Automatic Term Extraction deals with the extraction of terminology from a domain specific corpus, and has long been an established research area in data and knowledge acquisition. ATE remains a challenging task as it is known that there is no existing ATE methods that can consistently outperform others in any domain. This work adopts a refreshed perspective to this problem: instead of searching for such a 'one-size-fit-all' solution that may never exist, we propose to develop generic methods to 'enhance' existing ATE methods. We introduce SemRe-Rank, the first method based on this principle, to incorporate semantic relatedness - an often overlooked venue - into an existing ATE method to further improve its performance. SemRe-Rank incorporates word embeddings into a personalised PageRank process to compute 'semantic importance' scores for candidate terms from a graph of semantically related words (nodes), which are then used to revise the scores of candidate terms computed by a base ATE algorithm. Extensively evaluated with 13 state-of-the-art base ATE methods on four datasets of diverse nature, it is shown to have achieved widespread improvement over all base methods and across all datasets, with up to 15 percentage points when measured by the Precision in the top ranked K candidate terms (the average for a set of K's), or up to 28 percentage points in F1 measured at a K that equals to the expected real terms in the candidates (F1 in short). Compared to an alternative approach built on the well-known TextRank algorithm, SemRe-Rank can potentially outperform by up to 8 points in Precision at top K, or up to 17 points in F1. 3 authors · Nov 9, 2017
1 Extracting Mathematical Concepts with Large Language Models We extract mathematical concepts from mathematical text using generative large language models (LLMs) like ChatGPT, contributing to the field of automatic term extraction (ATE) and mathematical text processing, and also to the study of LLMs themselves. Our work builds on that of others in that we aim for automatic extraction of terms (keywords) in one mathematical field, category theory, using as a corpus the 755 abstracts from a snapshot of the online journal "Theory and Applications of Categories", circa 2020. Where our study diverges from previous work is in (1) providing a more thorough analysis of what makes mathematical term extraction a difficult problem to begin with; (2) paying close attention to inter-annotator disagreements; (3) providing a set of guidelines which both human and machine annotators could use to standardize the extraction process; (4) introducing a new annotation tool to help humans with ATE, applicable to any mathematical field and even beyond mathematics; (5) using prompts to ChatGPT as part of the extraction process, and proposing best practices for such prompts; and (6) raising the question of whether ChatGPT could be used as an annotator on the same level as human experts. Our overall findings are that the matter of mathematical ATE is an interesting field which can benefit from participation by LLMs, but LLMs themselves cannot at this time surpass human performance on it. 4 authors · Aug 29, 2023
- Improving the Quality of Neural Machine Translation Through Proper Translation of Name Entities In this paper, we have shown a method of improving the quality of neural machine translation by translating/transliterating name entities as a preprocessing step. Through experiments we have shown the performance gain of our system. For evaluation we considered three types of name entities viz person names, location names and organization names. The system was able to correctly translate mostly all the name entities. For person names the accuracy was 99.86%, for location names the accuracy was 99.63% and for organization names the accuracy was 99.05%. Overall, the accuracy of the system was 99.52% 3 authors · May 12, 2023
- Translation Word-Level Auto-Completion: What can we achieve out of the box? Research on Machine Translation (MT) has achieved important breakthroughs in several areas. While there is much more to be done in order to build on this success, we believe that the language industry needs better ways to take full advantage of current achievements. Due to a combination of factors, including time, resources, and skills, businesses tend to apply pragmatism into their AI workflows. Hence, they concentrate more on outcomes, e.g. delivery, shipping, releases, and features, and adopt high-level working production solutions, where possible. Among the features thought to be helpful for translators are sentence-level and word-level translation auto-suggestion and auto-completion. Suggesting alternatives can inspire translators and limit their need to refer to external resources, which hopefully boosts their productivity. This work describes our submissions to WMT's shared task on word-level auto-completion, for the Chinese-to-English, English-to-Chinese, German-to-English, and English-to-German language directions. We investigate the possibility of using pre-trained models and out-of-the-box features from available libraries. We employ random sampling to generate diverse alternatives, which reveals good results. Furthermore, we introduce our open-source API, based on CTranslate2, to serve translations, auto-suggestions, and auto-completions. 3 authors · Oct 23, 2022
- The University of Helsinki submissions to the WMT19 news translation task In this paper, we present the University of Helsinki submissions to the WMT 2019 shared task on news translation in three language pairs: English-German, English-Finnish and Finnish-English. This year, we focused first on cleaning and filtering the training data using multiple data-filtering approaches, resulting in much smaller and cleaner training sets. For English-German, we trained both sentence-level transformer models and compared different document-level translation approaches. For Finnish-English and English-Finnish we focused on different segmentation approaches, and we also included a rule-based system for English-Finnish. 8 authors · Jun 10, 2019
1 Multilingual Clinical NER: Translation or Cross-lingual Transfer? Natural language tasks like Named Entity Recognition (NER) in the clinical domain on non-English texts can be very time-consuming and expensive due to the lack of annotated data. Cross-lingual transfer (CLT) is a way to circumvent this issue thanks to the ability of multilingual large language models to be fine-tuned on a specific task in one language and to provide high accuracy for the same task in another language. However, other methods leveraging translation models can be used to perform NER without annotated data in the target language, by either translating the training set or test set. This paper compares cross-lingual transfer with these two alternative methods, to perform clinical NER in French and in German without any training data in those languages. To this end, we release MedNERF a medical NER test set extracted from French drug prescriptions and annotated with the same guidelines as an English dataset. Through extensive experiments on this dataset and on a German medical dataset (Frei and Kramer, 2021), we show that translation-based methods can achieve similar performance to CLT but require more care in their design. And while they can take advantage of monolingual clinical language models, those do not guarantee better results than large general-purpose multilingual models, whether with cross-lingual transfer or translation. 4 authors · Jun 7, 2023 1
- Audience-specific Explanations for Machine Translation In machine translation, a common problem is that the translation of certain words even if translated can cause incomprehension of the target language audience due to different cultural backgrounds. A solution to solve this problem is to add explanations for these words. In a first step, we therefore need to identify these words or phrases. In this work we explore techniques to extract example explanations from a parallel corpus. However, the sparsity of sentences containing words that need to be explained makes building the training dataset extremely difficult. In this work, we propose a semi-automatic technique to extract these explanations from a large parallel corpus. Experiments on English->German language pair show that our method is able to extract sentence so that more than 10% of the sentences contain explanation, while only 1.9% of the original sentences contain explanations. In addition, experiments on English->French and English->Chinese language pairs also show similar conclusions. This is therefore an essential first automatic step to create a explanation dataset. Furthermore we show that the technique is robust for all three language pairs. 2 authors · Sep 22, 2023
3 ParaNames 1.0: Creating an Entity Name Corpus for 400+ Languages using Wikidata We introduce ParaNames, a massively multilingual parallel name resource consisting of 140 million names spanning over 400 languages. Names are provided for 16.8 million entities, and each entity is mapped from a complex type hierarchy to a standard type (PER/LOC/ORG). Using Wikidata as a source, we create the largest resource of this type to date. We describe our approach to filtering and standardizing the data to provide the best quality possible. ParaNames is useful for multilingual language processing, both in defining tasks for name translation/transliteration and as supplementary data for tasks such as named entity recognition and linking. We demonstrate the usefulness of ParaNames on two tasks. First, we perform canonical name translation between English and 17 other languages. Second, we use it as a gazetteer for multilingual named entity recognition, obtaining performance improvements on all 10 languages evaluated. Broadening Linguistic Technologies Lab (BLT Lab) · May 15, 2024
- Towards Universal Semantics With Large Language Models The Natural Semantic Metalanguage (NSM) is a linguistic theory based on a universal set of semantic primes: simple, primitive word-meanings that have been shown to exist in most, if not all, languages of the world. According to this framework, any word, regardless of complexity, can be paraphrased using these primes, revealing a clear and universally translatable meaning. These paraphrases, known as explications, can offer valuable applications for many natural language processing (NLP) tasks, but producing them has traditionally been a slow, manual process. In this work, we present the first study of using large language models (LLMs) to generate NSM explications. We introduce automatic evaluation methods, a tailored dataset for training and evaluation, and fine-tuned models for this task. Our 1B and 8B models outperform GPT-4o in producing accurate, cross-translatable explications, marking a significant step toward universal semantic representation with LLMs and opening up new possibilities for applications in semantic analysis, translation, and beyond. 5 authors · May 16, 2025
- Gender Neutralization for an Inclusive Machine Translation: from Theoretical Foundations to Open Challenges Gender inclusivity in language technologies has become a prominent research topic. In this study, we explore gender-neutral translation (GNT) as a form of gender inclusivity and a goal to be achieved by machine translation (MT) models, which have been found to perpetuate gender bias and discrimination. Specifically, we focus on translation from English into Italian, a language pair representative of salient gender-related linguistic transfer problems. To define GNT, we review a selection of relevant institutional guidelines for gender-inclusive language, discuss its scenarios of use, and examine the technical challenges of performing GNT in MT, concluding with a discussion of potential solutions to encourage advancements toward greater inclusivity in MT. 5 authors · Jan 24, 2023
- CUNI Systems for the WMT22 Czech-Ukrainian Translation Task We present Charles University submissions to the WMT22 General Translation Shared Task on Czech-Ukrainian and Ukrainian-Czech machine translation. We present two constrained submissions based on block back-translation and tagged back-translation and experiment with rule-based romanization of Ukrainian. Our results show that the romanization only has a minor effect on the translation quality. Further, we describe Charles Translator, a system that was developed in March 2022 as a response to the migration from Ukraine to the Czech Republic. Compared to our constrained systems, it did not use the romanization and used some proprietary data sources. 3 authors · Dec 1, 2022
- The ITU Faroese Pairs Dataset This article documents a dataset of sentence pairs between Faroese and Danish, produced at ITU Copenhagen. The data covers tranlsation from both source languages, and is intended for use as training data for machine translation systems in this language pair. 3 authors · Jun 17, 2022
1 Beyond English-Centric Multilingual Machine Translation Existing work in translation demonstrated the potential of massively multilingual machine translation by training a single model able to translate between any pair of languages. However, much of this work is English-Centric by training only on data which was translated from or to English. While this is supported by large sources of training data, it does not reflect translation needs worldwide. In this work, we create a true Many-to-Many multilingual translation model that can translate directly between any pair of 100 languages. We build and open source a training dataset that covers thousands of language directions with supervised data, created through large-scale mining. Then, we explore how to effectively increase model capacity through a combination of dense scaling and language-specific sparse parameters to create high quality models. Our focus on non-English-Centric models brings gains of more than 10 BLEU when directly translating between non-English directions while performing competitively to the best single systems of WMT. We open-source our scripts so that others may reproduce the data, evaluation, and final M2M-100 model. 17 authors · Oct 21, 2020
- Learning Semantic Correspondences in Technical Documentation We consider the problem of translating high-level textual descriptions to formal representations in technical documentation as part of an effort to model the meaning of such documentation. We focus specifically on the problem of learning translational correspondences between text descriptions and grounded representations in the target documentation, such as formal representation of functions or code templates. Our approach exploits the parallel nature of such documentation, or the tight coupling between high-level text and the low-level representations we aim to learn. Data is collected by mining technical documents for such parallel text-representation pairs, which we use to train a simple semantic parsing model. We report new baseline results on sixteen novel datasets, including the standard library documentation for nine popular programming languages across seven natural languages, and a small collection of Unix utility manuals. 2 authors · May 13, 2017
- Spanish Legalese Language Model and Corpora There are many Language Models for the English language according to its worldwide relevance. However, for the Spanish language, even if it is a widely spoken language, there are very few Spanish Language Models which result to be small and too general. Legal slang could be think of a Spanish variant on its own as it is very complicated in vocabulary, semantics and phrase understanding. For this work we gathered legal-domain corpora from different sources, generated a model and evaluated against Spanish general domain tasks. The model provides reasonable results in those tasks. 4 authors · Oct 23, 2021
- PDFMathTranslate: Scientific Document Translation Preserving Layouts Language barriers in scientific documents hinder the diffusion and development of science and technologies. However, prior efforts in translating such documents largely overlooked the information in layouts. To bridge the gap, we introduce PDFMathTranslate, the world's first open-source software for translating scientific documents while preserving layouts. Leveraging the most recent advances in large language models and precise layout detection, we contribute to the community with key improvements in precision, flexibility, and efficiency. The work has been open-sourced at https://github.com/byaidu/pdfmathtranslate with more than 222k downloads. 4 authors · Jul 2, 2025
- Solving the unsolvable: Translating case law in Hong Kong This paper addresses the challenges translating case law under Hong Kong's bilingual legal system. It highlights the initial success of translating all written statutes into Chinese before the 1997 handover, a task mandated by the Basic Law. The effort involved significant collaboration among legal, linguistic, and translation experts, resulting in a comprehensive and culturally appropriate bilingual legal system. However, translating case law remains a significant challenge due to the sheer volume and continuous growth of judicial decisions. The paper critiques the governments and judiciarys sporadic and uncoordinated efforts to translate case law, contrasting it with the thorough approach previously taken for statute translation. Although the government acknowledges the importance of legal bilingualism, it lacks a sustainable strategy for translating case law. The Judiciarys position that translating all judgments is unnecessary, unrealistic, and not cost-effectiveis analyzed and critiqued for its impact on legal transparency and public trust. A proposed solution involves leveraging machine translation technology through a human-machine interactive translation platform, which undergoes two major transitions. Initially based on a neural model, the platform transitions to using a large language model for improved translation accuracy. Furthermore, it evolves from a single-agent system to a multi-agent system, incorporating Translator, Annotator, and Proofreader agents. This multi-agent approach, supported by a grant, aims to facilitate efficient, high-quality translation of judicial judgments by integrating advanced artificial intelligence and continuous feedback mechanisms, thus better meeting the needs of a bilingual legal system. 5 authors · Jan 16, 2025
- BOUQuET: dataset, Benchmark and Open initiative for Universal Quality Evaluation in Translation This paper presents BOUQuET, a multicentric and multi-register/domain dataset and benchmark, and its broader collaborative extension initiative. This dataset is handcrafted in non-English languages first, each of these source languages being represented among the 23 languages commonly used by half of the world's population and therefore having the potential to serve as pivot languages that will enable more accurate translations. The dataset is specially designed to avoid contamination and be multicentric, so as to enforce representation of multilingual language features. In addition, the dataset goes beyond the sentence level, as it is organized in paragraphs of various lengths. Compared with related machine translation (MT) datasets, we show that BOUQuET has a broader representation of domains while simplifying the translation task for non-experts. Therefore, BOUQuET is specially suitable for the open initiative and call for translation participation that we are launching to extend it to a multi-way parallel corpus to any written language. 17 authors · Feb 6, 2025
1 xMEN: A Modular Toolkit for Cross-Lingual Medical Entity Normalization Objective: To improve performance of medical entity normalization across many languages, especially when fewer language resources are available compared to English. Materials and Methods: We introduce xMEN, a modular system for cross-lingual medical entity normalization, which performs well in both low- and high-resource scenarios. When synonyms in the target language are scarce for a given terminology, we leverage English aliases via cross-lingual candidate generation. For candidate ranking, we incorporate a trainable cross-encoder model if annotations for the target task are available. We also evaluate cross-encoders trained in a weakly supervised manner based on machine-translated datasets from a high resource domain. Our system is publicly available as an extensible Python toolkit. Results: xMEN improves the state-of-the-art performance across a wide range of multilingual benchmark datasets. Weakly supervised cross-encoders are effective when no training data is available for the target task. Through the compatibility of xMEN with the BigBIO framework, it can be easily used with existing and prospective datasets. Discussion: Our experiments show the importance of balancing the output of general-purpose candidate generators with subsequent trainable re-rankers, which we achieve through a rank regularization term in the loss function of the cross-encoder. However, error analysis reveals that multi-word expressions and other complex entities are still challenging. Conclusion: xMEN exhibits strong performance for medical entity normalization in multiple languages, even when no labeled data and few terminology aliases for the target language are available. Its configuration system and evaluation modules enable reproducible benchmarks. Models and code are available online at the following URL: https://github.com/hpi-dhc/xmen 5 authors · Oct 17, 2023
- Multilingual LAMA: Investigating Knowledge in Multilingual Pretrained Language Models Recently, it has been found that monolingual English language models can be used as knowledge bases. Instead of structural knowledge base queries, masked sentences such as "Paris is the capital of [MASK]" are used as probes. We translate the established benchmarks TREx and GoogleRE into 53 languages. Working with mBERT, we investigate three questions. (i) Can mBERT be used as a multilingual knowledge base? Most prior work only considers English. Extending research to multiple languages is important for diversity and accessibility. (ii) Is mBERT's performance as knowledge base language-independent or does it vary from language to language? (iii) A multilingual model is trained on more text, e.g., mBERT is trained on 104 Wikipedias. Can mBERT leverage this for better performance? We find that using mBERT as a knowledge base yields varying performance across languages and pooling predictions across languages improves performance. Conversely, mBERT exhibits a language bias; e.g., when queried in Italian, it tends to predict Italy as the country of origin. 3 authors · Feb 1, 2021
- Enhancing Low-Resource Minority Language Translation with LLMs and Retrieval-Augmented Generation for Cultural Nuances This study investigates the challenges of translating low-resource languages by integrating Large Language Models (LLMs) with Retrieval-Augmented Generation (RAG). Various model configurations were tested on Hakka translations, with BLEU scores ranging from 12% (dictionary-only) to 31% (RAG with Gemini 2.0). The best-performing model (Model 4) combined retrieval and advanced language modeling, improving lexical coverage, particularly for specialized or culturally nuanced terms, and enhancing grammatical coherence. A two-stage method (Model 3) using dictionary outputs refined by Gemini 2.0 achieved a BLEU score of 26%, highlighting iterative correction's value and the challenges of domain-specific expressions. Static dictionary-based approaches struggled with context-sensitive content, demonstrating the limitations of relying solely on predefined resources. These results emphasize the need for curated resources, domain knowledge, and ethical collaboration with local communities, offering a framework that improves translation accuracy and fluency while supporting cultural preservation. 4 authors · May 15, 2025
- From SALAMANDRA to SALAMANDRATA: BSC Submission for WMT25 General Machine Translation Shared Task In this paper, we present the SALAMANDRATA family of models, an improved iteration of SALAMANDRA LLMs (Gonzalez-Agirre et al., 2025) specifically trained to achieve strong performance in translation-related tasks for 38 European languages. SALAMANDRATA comes in two scales: 2B and 7B parameters. For both versions, we applied the same training recipe with a first step of continual pre-training on parallel data, and a second step of supervised fine-tuning on high-quality instructions. The BSC submission to the WMT25 General Machine Translation shared task is based on the 7B variant of SALAMANDRATA. We first adapted the model vocabulary to support the additional non-European languages included in the task. This was followed by a second phase of continual pre-training and supervised fine-tuning, carefully designed to optimize performance across all translation directions for this year's shared task. For decoding, we employed two quality-aware strategies: Minimum Bayes Risk Decoding and Tuned Re-ranking using COMET and COMET-KIWI respectively. We publicly release both the 2B and 7B versions of SALAMANDRATA, along with the newer SALAMANDRATA-V2 model, on Hugging Face1 11 authors · Aug 18, 2025
4 Neural Machine Translation of Rare Words with Subword Units Neural machine translation (NMT) models typically operate with a fixed vocabulary, but translation is an open-vocabulary problem. Previous work addresses the translation of out-of-vocabulary words by backing off to a dictionary. In this paper, we introduce a simpler and more effective approach, making the NMT model capable of open-vocabulary translation by encoding rare and unknown words as sequences of subword units. This is based on the intuition that various word classes are translatable via smaller units than words, for instance names (via character copying or transliteration), compounds (via compositional translation), and cognates and loanwords (via phonological and morphological transformations). We discuss the suitability of different word segmentation techniques, including simple character n-gram models and a segmentation based on the byte pair encoding compression algorithm, and empirically show that subword models improve over a back-off dictionary baseline for the WMT 15 translation tasks English-German and English-Russian by 1.1 and 1.3 BLEU, respectively. 3 authors · Aug 31, 2015
- Feriji: A French-Zarma Parallel Corpus, Glossary & Translator Machine translation (MT) is a rapidly expanding field that has experienced significant advancements in recent years with the development of models capable of translating multiple languages with remarkable accuracy. However, the representation of African languages in this field still needs to improve due to linguistic complexities and limited resources. This applies to the Zarma language, a dialect of Songhay (of the Nilo-Saharan language family) spoken by over 5 million people across Niger and neighboring countries lewis2016ethnologue. This paper introduces Feriji, the first robust French-Zarma parallel corpus and glossary designed for MT. The corpus, containing 61,085 sentences in Zarma and 42,789 in French, and a glossary of 4,062 words represent a significant step in addressing the need for more resources for Zarma. We fine-tune three large language models on our dataset, obtaining a BLEU score of 30.06 on the best-performing model. We further evaluate the models on human judgments of fluency, comprehension, and readability and the importance and impact of the corpus and models. Our contributions help to bridge a significant language gap and promote an essential and overlooked indigenous African language. 4 authors · Jun 9, 2024
2 MultiMed-ST: Large-scale Many-to-many Multilingual Medical Speech Translation Multilingual speech translation (ST) in the medical domain enhances patient care by enabling efficient communication across language barriers, alleviating specialized workforce shortages, and facilitating improved diagnosis and treatment, particularly during pandemics. In this work, we present the first systematic study on medical ST, to our best knowledge, by releasing MultiMed-ST, a large-scale ST dataset for the medical domain, spanning all translation directions in five languages: Vietnamese, English, German, French, Traditional Chinese and Simplified Chinese, together with the models. With 290,000 samples, our dataset is the largest medical machine translation (MT) dataset and the largest many-to-many multilingual ST among all domains. Secondly, we present the most extensive analysis study in ST research to date, including: empirical baselines, bilingual-multilingual comparative study, end-to-end vs. cascaded comparative study, task-specific vs. multi-task sequence-to-sequence (seq2seq) comparative study, code-switch analysis, and quantitative-qualitative error analysis. All code, data, and models are available online: https://github.com/leduckhai/MultiMed-ST. 13 authors · Apr 4, 2025
1 Creative and Context-Aware Translation of East Asian Idioms with GPT-4 As a type of figurative language, an East Asian idiom condenses rich cultural background into only a few characters. Translating such idioms is challenging for human translators, who often resort to choosing a context-aware translation from an existing list of candidates. However, compiling a dictionary of candidate translations demands much time and creativity even for expert translators. To alleviate such burden, we evaluate if GPT-4 can help generate high-quality translations. Based on automatic evaluations of faithfulness and creativity, we first identify Pareto-optimal prompting strategies that can outperform translation engines from Google and DeepL. Then, at a low cost, our context-aware translations can achieve far more high-quality translations per idiom than the human baseline. We open-source all code and data to facilitate further research. 4 authors · Oct 1, 2024
1 University of Cape Town's WMT22 System: Multilingual Machine Translation for Southern African Languages The paper describes the University of Cape Town's submission to the constrained track of the WMT22 Shared Task: Large-Scale Machine Translation Evaluation for African Languages. Our system is a single multilingual translation model that translates between English and 8 South / South East African Languages, as well as between specific pairs of the African languages. We used several techniques suited for low-resource machine translation (MT), including overlap BPE, back-translation, synthetic training data generation, and adding more translation directions during training. Our results show the value of these techniques, especially for directions where very little or no bilingual training data is available. 3 authors · Oct 21, 2022
1 Transfer to a Low-Resource Language via Close Relatives: The Case Study on Faroese Multilingual language models have pushed state-of-the-art in cross-lingual NLP transfer. The majority of zero-shot cross-lingual transfer, however, use one and the same massively multilingual transformer (e.g., mBERT or XLM-R) to transfer to all target languages, irrespective of their typological, etymological, and phylogenetic relations to other languages. In particular, readily available data and models of resource-rich sibling languages are often ignored. In this work, we empirically show, in a case study for Faroese -- a low-resource language from a high-resource language family -- that by leveraging the phylogenetic information and departing from the 'one-size-fits-all' paradigm, one can improve cross-lingual transfer to low-resource languages. In particular, we leverage abundant resources of other Scandinavian languages (i.e., Danish, Norwegian, Swedish, and Icelandic) for the benefit of Faroese. Our evaluation results show that we can substantially improve the transfer performance to Faroese by exploiting data and models of closely-related high-resource languages. Further, we release a new web corpus of Faroese and Faroese datasets for named entity recognition (NER), semantic text similarity (STS), and new language models trained on all Scandinavian languages. 4 authors · Apr 18, 2023
- Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation We propose a simple solution to use a single Neural Machine Translation (NMT) model to translate between multiple languages. Our solution requires no change in the model architecture from our base system but instead introduces an artificial token at the beginning of the input sentence to specify the required target language. The rest of the model, which includes encoder, decoder and attention, remains unchanged and is shared across all languages. Using a shared wordpiece vocabulary, our approach enables Multilingual NMT using a single model without any increase in parameters, which is significantly simpler than previous proposals for Multilingual NMT. Our method often improves the translation quality of all involved language pairs, even while keeping the total number of model parameters constant. On the WMT'14 benchmarks, a single multilingual model achieves comparable performance for EnglishrightarrowFrench and surpasses state-of-the-art results for EnglishrightarrowGerman. Similarly, a single multilingual model surpasses state-of-the-art results for FrenchrightarrowEnglish and GermanrightarrowEnglish on WMT'14 and WMT'15 benchmarks respectively. On production corpora, multilingual models of up to twelve language pairs allow for better translation of many individual pairs. In addition to improving the translation quality of language pairs that the model was trained with, our models can also learn to perform implicit bridging between language pairs never seen explicitly during training, showing that transfer learning and zero-shot translation is possible for neural translation. Finally, we show analyses that hints at a universal interlingua representation in our models and show some interesting examples when mixing languages. 12 authors · Nov 14, 2016
- Kreyòl-MT: Building MT for Latin American, Caribbean and Colonial African Creole Languages A majority of language technologies are tailored for a small number of high-resource languages, while relatively many low-resource languages are neglected. One such group, Creole languages, have long been marginalized in academic study, though their speakers could benefit from machine translation (MT). These languages are predominantly used in much of Latin America, Africa and the Caribbean. We present the largest cumulative dataset to date for Creole language MT, including 14.5M unique Creole sentences with parallel translations -- 11.6M of which we release publicly, and the largest bitexts gathered to date for 41 languages -- the first ever for 21. In addition, we provide MT models supporting all 41 Creole languages in 172 translation directions. Given our diverse dataset, we produce a model for Creole language MT exposed to more genre diversity than ever before, which outperforms a genre-specific Creole MT model on its own benchmark for 26 of 34 translation directions. 17 authors · May 8, 2024
- ParaNames: A Massively Multilingual Entity Name Corpus We introduce ParaNames, a multilingual parallel name resource consisting of 118 million names spanning across 400 languages. Names are provided for 13.6 million entities which are mapped to standardized entity types (PER/LOC/ORG). Using Wikidata as a source, we create the largest resource of this type to-date. We describe our approach to filtering and standardizing the data to provide the best quality possible. ParaNames is useful for multilingual language processing, both in defining tasks for name translation/transliteration and as supplementary data for tasks such as named entity recognition and linking. We demonstrate an application of ParaNames by training a multilingual model for canonical name translation to and from English. Our resource is released under a Creative Commons license (CC BY 4.0) at https://github.com/bltlab/paranames. 2 authors · Feb 28, 2022
- Reasoning or Simply Next Token Prediction? A Benchmark for Stress-Testing Large Language Models We propose MMLU-SR, a novel dataset designed to measure the true comprehension abilities of Large Language Models (LLMs) by challenging their performance in question-answering tasks with modified terms. We reasoned that an agent that ``truly'' understands a concept can still evaluate it when key terms are replaced by suitably defined alternate terms, and sought to differentiate such comprehension from mere text replacement. In our study, we modified standardized test questions by replacing a key term with a dummy word along with its definition. The key term could be in the context of questions, answers, or both questions and answers. Notwithstanding the high scores achieved by recent popular LLMs on the MMLU leaderboard, we found a substantial reduction in model performance after such replacement, suggesting poor comprehension. This new benchmark provides a rigorous benchmark for testing true model comprehension, and poses a challenge to the broader scientific community. 5 authors · Jun 15, 2024
- Adapters for Altering LLM Vocabularies: What Languages Benefit the Most? Vocabulary adaptation, which integrates new vocabulary into pre-trained language models (LMs), enables expansion to new languages and mitigates token over-fragmentation. However, existing approaches are limited by their reliance on heuristic or external embeddings. We propose VocADT, a novel method for vocabulary adaptation using adapter modules that are trained to learn the optimal linear combination of existing embeddings while keeping the model's weights fixed. VocADT offers a flexible and scalable solution without requiring external resources or language constraints. Across 11 languages-with various scripts, resource availability, and fragmentation-we demonstrate that VocADT outperforms the original Mistral model and other baselines across various multilingual tasks. We find that Latin-script languages and highly fragmented languages benefit the most from vocabulary adaptation. We further fine-tune the adapted model on the generative task of machine translation and find that vocabulary adaptation is still beneficial after fine-tuning and that VocADT is the most effective method. 6 authors · Oct 12, 2024
1 Do GPTs Produce Less Literal Translations? Large Language Models (LLMs) such as GPT-3 have emerged as general-purpose language models capable of addressing many natural language generation or understanding tasks. On the task of Machine Translation (MT), multiple works have investigated few-shot prompting mechanisms to elicit better translations from LLMs. However, there has been relatively little investigation on how such translations differ qualitatively from the translations generated by standard Neural Machine Translation (NMT) models. In this work, we investigate these differences in terms of the literalness of translations produced by the two systems. Using literalness measures involving word alignment and monotonicity, we find that translations out of English (E-X) from GPTs tend to be less literal, while exhibiting similar or better scores on MT quality metrics. We demonstrate that this finding is borne out in human evaluations as well. We then show that these differences are especially pronounced when translating sentences that contain idiomatic expressions. 4 authors · May 26, 2023
- Translating Step-by-Step: Decomposing the Translation Process for Improved Translation Quality of Long-Form Texts In this paper we present a step-by-step approach to long-form text translation, drawing on established processes in translation studies. Instead of viewing machine translation as a single, monolithic task, we propose a framework that engages language models in a multi-turn interaction, encompassing pre-translation research, drafting, refining, and proofreading, resulting in progressively improved translations. Extensive automatic evaluations using Gemini 1.5 Pro across ten language pairs show that translating step-by-step yields large translation quality improvements over conventional zero-shot prompting approaches and earlier human-like baseline strategies, resulting in state-of-the-art results on WMT2024. 4 authors · Sep 10, 2024
9 A Shocking Amount of the Web is Machine Translated: Insights from Multi-Way Parallelism We show that content on the web is often translated into many languages, and the low quality of these multi-way translations indicates they were likely created using Machine Translation (MT). Multi-way parallel, machine generated content not only dominates the translations in lower resource languages; it also constitutes a large fraction of the total web content in those languages. We also find evidence of a selection bias in the type of content which is translated into many languages, consistent with low quality English content being translated en masse into many lower resource languages, via MT. Our work raises serious concerns about training models such as multilingual large language models on both monolingual and bilingual data scraped from the web. 5 authors · Jan 11, 2024
- BiVert: Bidirectional Vocabulary Evaluation using Relations for Machine Translation Neural machine translation (NMT) has progressed rapidly in the past few years, promising improvements and quality translations for different languages. Evaluation of this task is crucial to determine the quality of the translation. Overall, insufficient emphasis is placed on the actual sense of the translation in traditional methods. We propose a bidirectional semantic-based evaluation method designed to assess the sense distance of the translation from the source text. This approach employs the comprehensive multilingual encyclopedic dictionary BabelNet. Through the calculation of the semantic distance between the source and its back translation of the output, our method introduces a quantifiable approach that empowers sentence comparison on the same linguistic level. Factual analysis shows a strong correlation between the average evaluation scores generated by our method and the human assessments across various machine translation systems for English-German language pair. Finally, our method proposes a new multilingual approach to rank MT systems without the need for parallel corpora. 2 authors · Mar 6, 2024
- The Tatoeba Translation Challenge -- Realistic Data Sets for Low Resource and Multilingual MT This paper describes the development of a new benchmark for machine translation that provides training and test data for thousands of language pairs covering over 500 languages and tools for creating state-of-the-art translation models from that collection. The main goal is to trigger the development of open translation tools and models with a much broader coverage of the World's languages. Using the package it is possible to work on realistic low-resource scenarios avoiding artificially reduced setups that are common when demonstrating zero-shot or few-shot learning. For the first time, this package provides a comprehensive collection of diverse data sets in hundreds of languages with systematic language and script annotation and data splits to extend the narrow coverage of existing benchmarks. Together with the data release, we also provide a growing number of pre-trained baseline models for individual language pairs and selected language groups. 1 authors · Oct 13, 2020
1 Dialectal and Low Resource Machine Translation for Aromanian We present a neural machine translation system that can translate between Romanian, English, and Aromanian (an endangered Eastern Romance language); the first of its kind. BLEU scores range from 17 to 32 depending on the direction and genre of the text. Alongside, we release the biggest known Aromanian-Romanian bilingual corpus, consisting of 79k cleaned sentence pairs. Additional tools such as an agnostic sentence embedder (used for both text mining and automatic evaluation) and a diacritics converter are also presented. We publicly release our findings and models. Finally, we describe the deployment of our quantized model at https://arotranslate.com. 3 authors · Oct 23, 2024
- Mapping Supervised Bilingual Word Embeddings from English to low-resource languages It is very challenging to work with low-resource languages due to the inadequate availability of data. Using a dictionary to map independently trained word embeddings into a shared vector space has proved to be very useful in learning bilingual embeddings in the past. Here we have tried to map individual embeddings of words in English and their corresponding translated words in low-resource languages like Estonian, Slovenian, Slovakian, and Hungarian. We have used a supervised learning approach. We report accuracy scores through various retrieval strategies which show that it is possible to approach challenging tasks in Natural Language Processing like machine translation for such languages, provided that we have at least some amount of proper bilingual data. We also conclude that we can follow an unsupervised learning path on monolingual text data as that is more suitable for low-resource languages. 1 authors · Oct 14, 2019
- A Parallel Corpus of Theses and Dissertations Abstracts In Brazil, the governmental body responsible for overseeing and coordinating post-graduate programs, CAPES, keeps records of all theses and dissertations presented in the country. Information regarding such documents can be accessed online in the Theses and Dissertations Catalog (TDC), which contains abstracts in Portuguese and English, and additional metadata. Thus, this database can be a potential source of parallel corpora for the Portuguese and English languages. In this article, we present the development of a parallel corpus from TDC, which is made available by CAPES under the open data initiative. Approximately 240,000 documents were collected and aligned using the Hunalign tool. We demonstrate the capability of our developed corpus by training Statistical Machine Translation (SMT) and Neural Machine Translation (NMT) models for both language directions, followed by a comparison with Google Translate (GT). Both translation models presented better BLEU scores than GT, with NMT system being the most accurate one. Sentence alignment was also manually evaluated, presenting an average of 82.30% correctly aligned sentences. Our parallel corpus is freely available in TMX format, with complementary information regarding document metadata 3 authors · May 5, 2019
10 Enhancing Entertainment Translation for Indian Languages using Adaptive Context, Style and LLMs We address the challenging task of neural machine translation (NMT) in the entertainment domain, where the objective is to automatically translate a given dialogue from a source language content to a target language. This task has various applications, particularly in automatic dubbing, subtitling, and other content localization tasks, enabling source content to reach a wider audience. Traditional NMT systems typically translate individual sentences in isolation, without facilitating knowledge transfer of crucial elements such as the context and style from previously encountered sentences. In this work, we emphasize the significance of these fundamental aspects in producing pertinent and captivating translations. We demonstrate their significance through several examples and propose a novel framework for entertainment translation, which, to our knowledge, is the first of its kind. Furthermore, we introduce an algorithm to estimate the context and style of the current session and use these estimations to generate a prompt that guides a Large Language Model (LLM) to generate high-quality translations. Our method is both language and LLM-agnostic, making it a general-purpose tool. We demonstrate the effectiveness of our algorithm through various numerical studies and observe significant improvement in the COMET scores over various state-of-the-art LLMs. Moreover, our proposed method consistently outperforms baseline LLMs in terms of win-ratio. 3 authors · Dec 29, 2024
22 DRT-o1: Optimized Deep Reasoning Translation via Long Chain-of-Thought Recently, O1-like models have emerged as representative examples, illustrating the effectiveness of long chain-of-thought (CoT) in reasoning tasks such as math and coding tasks. In this paper, we introduce DRT-o1, an attempt to bring the success of long CoT to neural machine translation (MT). Specifically, in view of the literature books that might involve similes and metaphors, translating these texts to a target language is very difficult in practice due to cultural differences. In such cases, literal translation often fails to convey the intended meaning effectively. Even for professional human translators, considerable thought must be given to preserving semantics throughout the translation process. To simulate LLMs' long thought ability in MT, we first mine sentences containing similes or metaphors from existing literature books, and then develop a multi-agent framework to translate these sentences via long thought. In the multi-agent framework, a translator is used to iteratively translate the source sentence under the suggestions provided by an advisor. To ensure the effectiveness of the long thoughts, an evaluator is also employed to judge whether the translation in the current round is better than the previous one or not. In this manner, we collect tens of thousands of long-thought MT data, which is used to train our DRT-o1. The experimental results on literature translation demonstrate the effectiveness of the DRT-o1. Using Qwen2.5-7B and Qwen2.5-14B as the backbones, the improvement brought by DRT-o1 achieves 7.33~8.26 BLEU and 1.66~3.36 CometScore. Besides, DRT-o1-7B can outperform QwQ-32B-Preview by 7.82 BLEU and 1.46 CometScore, showing its effectiveness. The project is available at https://github.com/krystalan/DRT-o1 4 authors · Dec 23, 2024 4
- Sequence-to-Sequence Resources for Catalan In this work, we introduce sequence-to-sequence language resources for Catalan, a moderately under-resourced language, towards two tasks, namely: Summarization and Machine Translation (MT). We present two new abstractive summarization datasets in the domain of newswire. We also introduce a parallel Catalan-English corpus, paired with three different brand new test sets. Finally, we evaluate the data presented with competing state of the art models, and we develop baselines for these tasks using a newly created Catalan BART. We release the resulting resources of this work under open license to encourage the development of language technology in Catalan. 5 authors · Feb 14, 2022
- Facebook AI WMT21 News Translation Task Submission We describe Facebook's multilingual model submission to the WMT2021 shared task on news translation. We participate in 14 language directions: English to and from Czech, German, Hausa, Icelandic, Japanese, Russian, and Chinese. To develop systems covering all these directions, we focus on multilingual models. We utilize data from all available sources --- WMT, large-scale data mining, and in-domain backtranslation --- to create high quality bilingual and multilingual baselines. Subsequently, we investigate strategies for scaling multilingual model size, such that one system has sufficient capacity for high quality representations of all eight languages. Our final submission is an ensemble of dense and sparse Mixture-of-Expert multilingual translation models, followed by finetuning on in-domain news data and noisy channel reranking. Compared to previous year's winning submissions, our multilingual system improved the translation quality on all language directions, with an average improvement of 2.0 BLEU. In the WMT2021 task, our system ranks first in 10 directions based on automatic evaluation. 6 authors · Aug 6, 2021
- Charles Translator: A Machine Translation System between Ukrainian and Czech We present Charles Translator, a machine translation system between Ukrainian and Czech, developed as part of a society-wide effort to mitigate the impact of the Russian-Ukrainian war on individuals and society. The system was developed in the spring of 2022 with the help of many language data providers in order to quickly meet the demand for such a service, which was not available at the time in the required quality. The translator was later implemented as an online web interface and as an Android app with speech input, both featuring Cyrillic-Latin script transliteration. The system translates directly, compared to other available systems that use English as a pivot, and thus take advantage of the typological similarity of the two languages. It uses the block back-translation method, which allows for efficient use of monolingual training data. The paper describes the development process, including data collection and implementation, evaluation, mentions several use cases, and outlines possibilities for the further development of the system for educational purposes. 10 authors · Apr 10, 2024
- DICTDIS: Dictionary Constrained Disambiguation for Improved NMT Domain-specific neural machine translation (NMT) systems (e.g., in educational applications) are socially significant with the potential to help make information accessible to a diverse set of users in multilingual societies. It is desirable that such NMT systems be lexically constrained and draw from domain-specific dictionaries. Dictionaries could present multiple candidate translations for a source word/phrase due to the polysemous nature of words. The onus is then on the NMT model to choose the contextually most appropriate candidate. Prior work has largely ignored this problem and focused on the single candidate constraint setting wherein the target word or phrase is replaced by a single constraint. In this work we present DictDis, a lexically constrained NMT system that disambiguates between multiple candidate translations derived from dictionaries. We achieve this by augmenting training data with multiple dictionary candidates to actively encourage disambiguation during training by implicitly aligning multiple candidate constraints. We demonstrate the utility of DictDis via extensive experiments on English-Hindi and English-German sentences in a variety of domains including regulatory, finance, engineering. We also present comparisons on standard benchmark test datasets. In comparison with existing approaches for lexically constrained and unconstrained NMT, we demonstrate superior performance with respect to constraint copy and disambiguation related measures on all domains while also obtaining improved fluency of up to 2-3 BLEU points on some domains. 3 authors · Oct 13, 2022
- New Textual Corpora for Serbian Language Modeling This paper will present textual corpora for Serbian (and Serbo-Croatian), usable for the training of large language models and publicly available at one of the several notable online repositories. Each corpus will be classified using multiple methods and its characteristics will be detailed. Additionally, the paper will introduce three new corpora: a new umbrella web corpus of Serbo-Croatian, a new high-quality corpus based on the doctoral dissertations stored within National Repository of Doctoral Dissertations from all Universities in Serbia, and a parallel corpus of abstract translation from the same source. The uniqueness of both old and new corpora will be accessed via frequency-based stylometric methods, and the results will be briefly discussed. 2 authors · May 15, 2024
2 Chain-of-Dictionary Prompting Elicits Translation in Large Language Models Large language models (LLMs) have shown surprisingly good performance in multilingual neural machine translation (MNMT) even when trained without parallel data. Yet, despite the fact that the amount of training data is gigantic, they still struggle with translating rare words, particularly for low-resource languages. Even worse, it is usually unrealistic to retrieve relevant demonstrations for in-context learning with low-resource languages on LLMs, which restricts the practical use of LLMs for translation -- how should we mitigate this problem? To this end, we present a novel method, CoD, which augments LLMs with prior knowledge with the chains of multilingual dictionaries for a subset of input words to elicit translation abilities for LLMs. Extensive experiments indicate that augmenting ChatGPT with CoD elicits large gains by up to 13x ChrF++ points for MNMT (3.08 to 42.63 for English to Serbian written in Cyrillic script) on FLORES-200 full devtest set. We further demonstrate the importance of chaining the multilingual dictionaries, as well as the superiority of CoD to few-shot demonstration for low-resource languages. 6 authors · May 11, 2023
- Semi-Supervised Low-Resource Style Transfer of Indonesian Informal to Formal Language with Iterative Forward-Translation In its daily use, the Indonesian language is riddled with informality, that is, deviations from the standard in terms of vocabulary, spelling, and word order. On the other hand, current available Indonesian NLP models are typically developed with the standard Indonesian in mind. In this work, we address a style-transfer from informal to formal Indonesian as a low-resource machine translation problem. We build a new dataset of parallel sentences of informal Indonesian and its formal counterpart. We benchmark several strategies to perform style transfer from informal to formal Indonesian. We also explore augmenting the training set with artificial forward-translated data. Since we are dealing with an extremely low-resource setting, we find that a phrase-based machine translation approach outperforms the Transformer-based approach. Alternatively, a pre-trained GPT-2 fined-tuned to this task performed equally well but costs more computational resource. Our findings show a promising step towards leveraging machine translation models for style transfer. Our code and data are available in https://github.com/haryoa/stif-indonesia 7 authors · Nov 6, 2020
- Don't Classify, Translate: Multi-Level E-Commerce Product Categorization Via Machine Translation E-commerce platforms categorize their products into a multi-level taxonomy tree with thousands of leaf categories. Conventional methods for product categorization are typically based on machine learning classification algorithms. These algorithms take product information as input (e.g., titles and descriptions) to classify a product into a leaf category. In this paper, we propose a new paradigm based on machine translation. In our approach, we translate a product's natural language description into a sequence of tokens representing a root-to-leaf path in a product taxonomy. In our experiments on two large real-world datasets, we show that our approach achieves better predictive accuracy than a state-of-the-art classification system for product categorization. In addition, we demonstrate that our machine translation models can propose meaningful new paths between previously unconnected nodes in a taxonomy tree, thereby transforming the taxonomy into a directed acyclic graph (DAG). We discuss how the resultant taxonomy DAG promotes user-friendly navigation, and how it is more adaptable to new products. 3 authors · Dec 13, 2018
- Building Bridges: A Dataset for Evaluating Gender-Fair Machine Translation into German The translation of gender-neutral person-referring terms (e.g., the students) is often non-trivial. Translating from English into German poses an interesting case -- in German, person-referring nouns are usually gender-specific, and if the gender of the referent(s) is unknown or diverse, the generic masculine (die Studenten (m.)) is commonly used. This solution, however, reduces the visibility of other genders, such as women and non-binary people. To counteract gender discrimination, a societal movement towards using gender-fair language exists (e.g., by adopting neosystems). However, gender-fair German is currently barely supported in machine translation (MT), requiring post-editing or manual translations. We address this research gap by studying gender-fair language in English-to-German MT. Concretely, we enrich a community-created gender-fair language dictionary and sample multi-sentence test instances from encyclopedic text and parliamentary speeches. Using these novel resources, we conduct the first benchmark study involving two commercial systems and six neural MT models for translating words in isolation and natural contexts across two domains. Our findings show that most systems produce mainly masculine forms and rarely gender-neutral variants, highlighting the need for future research. We release code and data at https://github.com/g8a9/building-bridges-gender-fair-german-mt. 3 authors · Jun 10, 2024
22 Trans-Tokenization and Cross-lingual Vocabulary Transfers: Language Adaptation of LLMs for Low-Resource NLP The development of monolingual language models for low and mid-resource languages continues to be hindered by the difficulty in sourcing high-quality training data. In this study, we present a novel cross-lingual vocabulary transfer strategy, trans-tokenization, designed to tackle this challenge and enable more efficient language adaptation. Our approach focuses on adapting a high-resource monolingual LLM to an unseen target language by initializing the token embeddings of the target language using a weighted average of semantically similar token embeddings from the source language. For this, we leverage a translation resource covering both the source and target languages. We validate our method with the Tweeties, a series of trans-tokenized LLMs, and demonstrate their competitive performance on various downstream tasks across a small but diverse set of languages. Additionally, we introduce Hydra LLMs, models with multiple swappable language modeling heads and embedding tables, which further extend the capabilities of our trans-tokenization strategy. By designing a Hydra LLM based on the multilingual model TowerInstruct, we developed a state-of-the-art machine translation model for Tatar, in a zero-shot manner, completely bypassing the need for high-quality parallel data. This breakthrough is particularly significant for low-resource languages like Tatar, where high-quality parallel data is hard to come by. By lowering the data and time requirements for training high-quality models, our trans-tokenization strategy allows for the development of LLMs for a wider range of languages, especially those with limited resources. We hope that our work will inspire further research and collaboration in the field of cross-lingual vocabulary transfer and contribute to the empowerment of languages on a global scale. 6 authors · Aug 8, 2024 2
- Enriching Biomedical Knowledge for Low-resource Language Through Large-Scale Translation Biomedical data and benchmarks are highly valuable yet very limited in low-resource languages other than English such as Vietnamese. In this paper, we make use of a state-of-the-art translation model in English-Vietnamese to translate and produce both pretrained as well as supervised data in the biomedical domains. Thanks to such large-scale translation, we introduce ViPubmedT5, a pretrained Encoder-Decoder Transformer model trained on 20 million translated abstracts from the high-quality public PubMed corpus. ViPubMedT5 demonstrates state-of-the-art results on two different biomedical benchmarks in summarization and acronym disambiguation. Further, we release ViMedNLI - a new NLP task in Vietnamese translated from MedNLI using the recently public En-vi translation model and carefully refined by human experts, with evaluations of existing methods against ViPubmedT5. 7 authors · Oct 11, 2022
- Translation Artifacts in Cross-lingual Transfer Learning Both human and machine translation play a central role in cross-lingual transfer learning: many multilingual datasets have been created through professional translation services, and using machine translation to translate either the test set or the training set is a widely used transfer technique. In this paper, we show that such translation process can introduce subtle artifacts that have a notable impact in existing cross-lingual models. For instance, in natural language inference, translating the premise and the hypothesis independently can reduce the lexical overlap between them, which current models are highly sensitive to. We show that some previous findings in cross-lingual transfer learning need to be reconsidered in the light of this phenomenon. Based on the gained insights, we also improve the state-of-the-art in XNLI for the translate-test and zero-shot approaches by 4.3 and 2.8 points, respectively. 3 authors · Apr 9, 2020
- Localising In-Domain Adaptation of Transformer-Based Biomedical Language Models In the era of digital healthcare, the huge volumes of textual information generated every day in hospitals constitute an essential but underused asset that could be exploited with task-specific, fine-tuned biomedical language representation models, improving patient care and management. For such specialized domains, previous research has shown that fine-tuning models stemming from broad-coverage checkpoints can largely benefit additional training rounds over large-scale in-domain resources. However, these resources are often unreachable for less-resourced languages like Italian, preventing local medical institutions to employ in-domain adaptation. In order to reduce this gap, our work investigates two accessible approaches to derive biomedical language models in languages other than English, taking Italian as a concrete use-case: one based on neural machine translation of English resources, favoring quantity over quality; the other based on a high-grade, narrow-scoped corpus natively written in Italian, thus preferring quality over quantity. Our study shows that data quantity is a harder constraint than data quality for biomedical adaptation, but the concatenation of high-quality data can improve model performance even when dealing with relatively size-limited corpora. The models published from our investigations have the potential to unlock important research opportunities for Italian hospitals and academia. Finally, the set of lessons learned from the study constitutes valuable insights towards a solution to build biomedical language models that are generalizable to other less-resourced languages and different domain settings. 5 authors · Dec 20, 2022
- Lessons from Natural Language Inference in the Clinical Domain State of the art models using deep neural networks have become very good in learning an accurate mapping from inputs to outputs. However, they still lack generalization capabilities in conditions that differ from the ones encountered during training. This is even more challenging in specialized, and knowledge intensive domains, where training data is limited. To address this gap, we introduce MedNLI - a dataset annotated by doctors, performing a natural language inference task (NLI), grounded in the medical history of patients. We present strategies to: 1) leverage transfer learning using datasets from the open domain, (e.g. SNLI) and 2) incorporate domain knowledge from external data and lexical sources (e.g. medical terminologies). Our results demonstrate performance gains using both strategies. 2 authors · Aug 21, 2018
- MorisienMT: A Dataset for Mauritian Creole Machine Translation In this paper, we describe MorisienMT, a dataset for benchmarking machine translation quality of Mauritian Creole. Mauritian Creole (Morisien) is the lingua franca of the Republic of Mauritius and is a French-based creole language. MorisienMT consists of a parallel corpus between English and Morisien, French and Morisien and a monolingual corpus for Morisien. We first give an overview of Morisien and then describe the steps taken to create the corpora and, from it, the training and evaluation splits. Thereafter, we establish a variety of baseline models using the created parallel corpora as well as large French--English corpora for transfer learning. We release our datasets publicly for research purposes and hope that this spurs research for Morisien machine translation. 2 authors · Jun 6, 2022
- Improving Access to Justice for the Indian Population: A Benchmark for Evaluating Translation of Legal Text to Indian Languages Most legal text in the Indian judiciary is written in complex English due to historical reasons. However, only about 10% of the Indian population is comfortable in reading English. Hence legal text needs to be made available in various Indian languages, possibly by translating the available legal text from English. Though there has been a lot of research on translation to and between Indian languages, to our knowledge, there has not been much prior work on such translation in the legal domain. In this work, we construct the first high-quality legal parallel corpus containing aligned text units in English and nine Indian languages, that includes several low-resource languages. We also benchmark the performance of a wide variety of Machine Translation (MT) systems over this corpus, including commercial MT systems, open-source MT systems and Large Language Models. Through a comprehensive survey by Law practitioners, we check how satisfied they are with the translations by some of these MT systems, and how well automatic MT evaluation metrics agree with the opinions of Law practitioners. 5 authors · Oct 15, 2023
- Context-Aware Machine Translation with Source Coreference Explanation Despite significant improvements in enhancing the quality of translation, context-aware machine translation (MT) models underperform in many cases. One of the main reasons is that they fail to utilize the correct features from context when the context is too long or their models are overly complex. This can lead to the explain-away effect, wherein the models only consider features easier to explain predictions, resulting in inaccurate translations. To address this issue, we propose a model that explains the decisions made for translation by predicting coreference features in the input. We construct a model for input coreference by exploiting contextual features from both the input and translation output representations on top of an existing MT model. We evaluate and analyze our method in the WMT document-level translation task of English-German dataset, the English-Russian dataset, and the multilingual TED talk dataset, demonstrating an improvement of over 1.0 BLEU score when compared with other context-aware models. 3 authors · Apr 30, 2024
4 Shiksha: A Technical Domain focused Translation Dataset and Model for Indian Languages Neural Machine Translation (NMT) models are typically trained on datasets with limited exposure to Scientific, Technical and Educational domains. Translation models thus, in general, struggle with tasks that involve scientific understanding or technical jargon. Their performance is found to be even worse for low-resource Indian languages. Finding a translation dataset that tends to these domains in particular, poses a difficult challenge. In this paper, we address this by creating a multilingual parallel corpus containing more than 2.8 million rows of English-to-Indic and Indic-to-Indic high-quality translation pairs across 8 Indian languages. We achieve this by bitext mining human-translated transcriptions of NPTEL video lectures. We also finetune and evaluate NMT models using this corpus and surpass all other publicly available models at in-domain tasks. We also demonstrate the potential for generalizing to out-of-domain translation tasks by improving the baseline by over 2 BLEU on average for these Indian languages on the Flores+ benchmark. We are pleased to release our model and dataset via this link: https://huggingface.co/SPRINGLab. 2 authors · Dec 12, 2024 2
- MEL: Legal Spanish Language Model Legal texts, characterized by complex and specialized terminology, present a significant challenge for Language Models. Adding an underrepresented language, such as Spanish, to the mix makes it even more challenging. While pre-trained models like XLM-RoBERTa have shown capabilities in handling multilingual corpora, their performance on domain specific documents remains underexplored. This paper presents the development and evaluation of MEL, a legal language model based on XLM-RoBERTa-large, fine-tuned on legal documents such as BOE (Bolet\'in Oficial del Estado, the Spanish oficial report of laws) and congress texts. We detail the data collection, processing, training, and evaluation processes. Evaluation benchmarks show a significant improvement over baseline models in understanding the legal Spanish language. We also present case studies demonstrating the model's application to new legal texts, highlighting its potential to perform top results over different NLP tasks. 10 authors · Jan 27, 2025
- Exploring Human-Like Translation Strategy with Large Language Models Large language models (LLMs) have demonstrated impressive capabilities in general scenarios, exhibiting a level of aptitude that approaches, in some aspects even surpasses, human-level intelligence. Among their numerous skills, the translation abilities of LLMs have received considerable attention. In contrast to traditional machine translation that focuses solely on source-target mapping, LLM-based translation can potentially mimic the human translation process that takes many preparatory steps to ensure high-quality translation. This work aims to explore this possibility by proposing the MAPS framework, which stands for Multi-Aspect Prompting and Selection. Specifically, we enable LLMs to first analyze the given source text and extract three aspects of translation-related knowledge: keywords, topics and relevant demonstrations to guide the translation process. To filter out the noisy and unhelpful knowledge, we employ a selection mechanism based on quality estimation. Experiments suggest that MAPS brings significant and consistent improvements over text-davinci-003 and Alpaca on eight translation directions from the latest WMT22 test sets. Our further analysis shows that the extracted knowledge is critical in resolving up to 59% of hallucination mistakes in translation. Code is available at https://github.com/zwhe99/MAPS-mt. 9 authors · May 6, 2023
- Increasing Coverage and Precision of Textual Information in Multilingual Knowledge Graphs Recent work in Natural Language Processing and Computer Vision has been using textual information -- e.g., entity names and descriptions -- available in knowledge graphs to ground neural models to high-quality structured data. However, when it comes to non-English languages, the quantity and quality of textual information are comparatively scarce. To address this issue, we introduce the novel task of automatic Knowledge Graph Enhancement (KGE) and perform a thorough investigation on bridging the gap in both the quantity and quality of textual information between English and non-English languages. More specifically, we: i) bring to light the problem of increasing multilingual coverage and precision of entity names and descriptions in Wikidata; ii) demonstrate that state-of-the-art methods, namely, Machine Translation (MT), Web Search (WS), and Large Language Models (LLMs), struggle with this task; iii) present M-NTA, a novel unsupervised approach that combines MT, WS, and LLMs to generate high-quality textual information; and, iv) study the impact of increasing multilingual coverage and precision of non-English textual information in Entity Linking, Knowledge Graph Completion, and Question Answering. As part of our effort towards better multilingual knowledge graphs, we also introduce WikiKGE-10, the first human-curated benchmark to evaluate KGE approaches in 10 languages across 7 language families. 6 authors · Nov 27, 2023
- ParaNMT-50M: Pushing the Limits of Paraphrastic Sentence Embeddings with Millions of Machine Translations We describe PARANMT-50M, a dataset of more than 50 million English-English sentential paraphrase pairs. We generated the pairs automatically by using neural machine translation to translate the non-English side of a large parallel corpus, following Wieting et al. (2017). Our hope is that ParaNMT-50M can be a valuable resource for paraphrase generation and can provide a rich source of semantic knowledge to improve downstream natural language understanding tasks. To show its utility, we use ParaNMT-50M to train paraphrastic sentence embeddings that outperform all supervised systems on every SemEval semantic textual similarity competition, in addition to showing how it can be used for paraphrase generation. 2 authors · Nov 15, 2017
- An Empirical study of Unsupervised Neural Machine Translation: analyzing NMT output, model's behavior and sentences' contribution Unsupervised Neural Machine Translation (UNMT) focuses on improving NMT results under the assumption there is no human translated parallel data, yet little work has been done so far in highlighting its advantages compared to supervised methods and analyzing its output in aspects other than translation accuracy. We focus on three very diverse languages, French, Gujarati, and Kazakh, and train bilingual NMT models, to and from English, with various levels of supervision, in high- and low- resource setups, measure quality of the NMT output and compare the generated sequences' word order and semantic similarity to source and reference sentences. We also use Layer-wise Relevance Propagation to evaluate the source and target sentences' contribution to the result, expanding the findings of previous works to the UNMT paradigm. 2 authors · Dec 19, 2023
- scb-mt-en-th-2020: A Large English-Thai Parallel Corpus The primary objective of our work is to build a large-scale English-Thai dataset for machine translation. We construct an English-Thai machine translation dataset with over 1 million segment pairs, curated from various sources, namely news, Wikipedia articles, SMS messages, task-based dialogs, web-crawled data and government documents. Methodology for gathering data, building parallel texts and removing noisy sentence pairs are presented in a reproducible manner. We train machine translation models based on this dataset. Our models' performance are comparable to that of Google Translation API (as of May 2020) for Thai-English and outperform Google when the Open Parallel Corpus (OPUS) is included in the training data for both Thai-English and English-Thai translation. The dataset, pre-trained models, and source code to reproduce our work are available for public use. 4 authors · Jul 7, 2020
- Sõnajaht: Definition Embeddings and Semantic Search for Reverse Dictionary Creation We present an information retrieval based reverse dictionary system using modern pre-trained language models and approximate nearest neighbors search algorithms. The proposed approach is applied to an existing Estonian language lexicon resource, S\~onaveeb (word web), with the purpose of enhancing and enriching it by introducing cross-lingual reverse dictionary functionality powered by semantic search. The performance of the system is evaluated using both an existing labeled English dataset of words and definitions that is extended to contain also Estonian and Russian translations, and a novel unlabeled evaluation approach that extracts the evaluation data from the lexicon resource itself using synonymy relations. Evaluation results indicate that the information retrieval based semantic search approach without any model training is feasible, producing median rank of 1 in the monolingual setting and median rank of 2 in the cross-lingual setting using the unlabeled evaluation approach, with models trained for cross-lingual retrieval and including Estonian in their training data showing superior performance in our particular task. TartuNLP · Apr 30, 2024
- An Efficient Approach for Machine Translation on Low-resource Languages: A Case Study in Vietnamese-Chinese Despite the rise of recent neural networks in machine translation, those networks do not work well if the training data is insufficient. In this paper, we proposed an approach for machine translation in low-resource languages such as Vietnamese-Chinese. Our proposed method leveraged the power of the multilingual pre-trained language model (mBART) and both Vietnamese and Chinese monolingual corpus. Firstly, we built an early bird machine translation model using the bilingual training dataset. Secondly, we used TF-IDF technique to select sentences from the monolingual corpus which are the most related to domains of the parallel dataset. Finally, the first model was used to synthesize the augmented training data from the selected monolingual corpus for the translation model. Our proposed scheme showed that it outperformed 8% compared to the transformer model. The augmented dataset also pushed the model performance. 3 authors · Jan 31, 2025
- UM4: Unified Multilingual Multiple Teacher-Student Model for Zero-Resource Neural Machine Translation Most translation tasks among languages belong to the zero-resource translation problem where parallel corpora are unavailable. Multilingual neural machine translation (MNMT) enables one-pass translation using shared semantic space for all languages compared to the two-pass pivot translation but often underperforms the pivot-based method. In this paper, we propose a novel method, named as Unified Multilingual Multiple teacher-student Model for NMT (UM4). Our method unifies source-teacher, target-teacher, and pivot-teacher models to guide the student model for the zero-resource translation. The source teacher and target teacher force the student to learn the direct source to target translation by the distilled knowledge on both source and target sides. The monolingual corpus is further leveraged by the pivot-teacher model to enhance the student model. Experimental results demonstrate that our model of 72 directions significantly outperforms previous methods on the WMT benchmark. 8 authors · Jul 11, 2022
- Should we Stop Training More Monolingual Models, and Simply Use Machine Translation Instead? Most work in NLP makes the assumption that it is desirable to develop solutions in the native language in question. There is consequently a strong trend towards building native language models even for low-resource languages. This paper questions this development, and explores the idea of simply translating the data into English, thereby enabling the use of pretrained, and large-scale, English language models. We demonstrate empirically that a large English language model coupled with modern machine translation outperforms native language models in most Scandinavian languages. The exception to this is Finnish, which we assume is due to inferior translation quality. Our results suggest that machine translation is a mature technology, which raises a serious counter-argument for training native language models for low-resource languages. This paper therefore strives to make a provocative but important point. As English language models are improving at an unprecedented pace, which in turn improves machine translation, it is from an empirical and environmental stand-point more effective to translate data from low-resource languages into English, than to build language models for such languages. 3 authors · Apr 21, 2021
1 Parameter-Efficient Neural Reranking for Cross-Lingual and Multilingual Retrieval State-of-the-art neural (re)rankers are notoriously data-hungry which -- given the lack of large-scale training data in languages other than English -- makes them rarely used in multilingual and cross-lingual retrieval settings. Current approaches therefore commonly transfer rankers trained on English data to other languages and cross-lingual setups by means of multilingual encoders: they fine-tune all parameters of pretrained massively multilingual Transformers (MMTs, e.g., multilingual BERT) on English relevance judgments, and then deploy them in the target language(s). In this work, we show that two parameter-efficient approaches to cross-lingual transfer, namely Sparse Fine-Tuning Masks (SFTMs) and Adapters, allow for a more lightweight and more effective zero-shot transfer to multilingual and cross-lingual retrieval tasks. We first train language adapters (or SFTMs) via Masked Language Modelling and then train retrieval (i.e., reranking) adapters (SFTMs) on top, while keeping all other parameters fixed. At inference, this modular design allows us to compose the ranker by applying the (re)ranking adapter (or SFTM) trained with source language data together with the language adapter (or SFTM) of a target language. We carry out a large scale evaluation on the CLEF-2003 and HC4 benchmarks and additionally, as another contribution, extend the former with queries in three new languages: Kyrgyz, Uyghur and Turkish. The proposed parameter-efficient methods outperform standard zero-shot transfer with full MMT fine-tuning, while being more modular and reducing training times. The gains are particularly pronounced for low-resource languages, where our approaches also substantially outperform the competitive machine translation-based rankers. 3 authors · Apr 5, 2022
- A Bilingual Parallel Corpus with Discourse Annotations Machine translation (MT) has almost achieved human parity at sentence-level translation. In response, the MT community has, in part, shifted its focus to document-level translation. However, the development of document-level MT systems is hampered by the lack of parallel document corpora. This paper describes BWB, a large parallel corpus first introduced in Jiang et al. (2022), along with an annotated test set. The BWB corpus consists of Chinese novels translated by experts into English, and the annotated test set is designed to probe the ability of machine translation systems to model various discourse phenomena. Our resource is freely available, and we hope it will serve as a guide and inspiration for more work in document-level machine translation. 6 authors · Oct 26, 2022
11 In-Context Example Selection via Similarity Search Improves Low-Resource Machine Translation The ability of generative large language models (LLMs) to perform in-context learning has given rise to a large body of research into how best to prompt models for various natural language processing tasks. In this paper, we focus on machine translation (MT), a task that has been shown to benefit from in-context translation examples. However no systematic studies have been published on how best to select examples, and mixed results have been reported on the usefulness of similarity-based selection over random selection. We provide a study covering multiple LLMs and multiple in-context example retrieval strategies, comparing multilingual sentence embeddings. We cover several language directions, representing different levels of language resourcedness (English into French, German, Swahili and Wolof). Contrarily to previously published results, we find that sentence embedding similarity can improve MT, especially for low-resource language directions, and discuss the balance between selection pool diversity and quality. We also highlight potential problems with the evaluation of LLM-based MT and suggest a more appropriate evaluation protocol, adapting the COMET metric to the evaluation of LLMs. Code and outputs are freely available at https://github.com/ArmelRandy/ICL-MT. 3 authors · Aug 1, 2024 2
- Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation Neural Machine Translation (NMT) is an end-to-end learning approach for automated translation, with the potential to overcome many of the weaknesses of conventional phrase-based translation systems. Unfortunately, NMT systems are known to be computationally expensive both in training and in translation inference. Also, most NMT systems have difficulty with rare words. These issues have hindered NMT's use in practical deployments and services, where both accuracy and speed are essential. In this work, we present GNMT, Google's Neural Machine Translation system, which attempts to address many of these issues. Our model consists of a deep LSTM network with 8 encoder and 8 decoder layers using attention and residual connections. To improve parallelism and therefore decrease training time, our attention mechanism connects the bottom layer of the decoder to the top layer of the encoder. To accelerate the final translation speed, we employ low-precision arithmetic during inference computations. To improve handling of rare words, we divide words into a limited set of common sub-word units ("wordpieces") for both input and output. This method provides a good balance between the flexibility of "character"-delimited models and the efficiency of "word"-delimited models, naturally handles translation of rare words, and ultimately improves the overall accuracy of the system. Our beam search technique employs a length-normalization procedure and uses a coverage penalty, which encourages generation of an output sentence that is most likely to cover all the words in the source sentence. On the WMT'14 English-to-French and English-to-German benchmarks, GNMT achieves competitive results to state-of-the-art. Using a human side-by-side evaluation on a set of isolated simple sentences, it reduces translation errors by an average of 60% compared to Google's phrase-based production system. 31 authors · Sep 26, 2016
- GERNERMED++: Transfer Learning in German Medical NLP We present a statistical model for German medical natural language processing trained for named entity recognition (NER) as an open, publicly available model. The work serves as a refined successor to our first GERNERMED model which is substantially outperformed by our work. We demonstrate the effectiveness of combining multiple techniques in order to achieve strong results in entity recognition performance by the means of transfer-learning on pretrained deep language models (LM), word-alignment and neural machine translation. Due to the sparse situation on open, public medical entity recognition models for German texts, this work offers benefits to the German research community on medical NLP as a baseline model. Since our model is based on public English data, its weights are provided without legal restrictions on usage and distribution. The sample code and the statistical model is available at: https://github.com/frankkramer-lab/GERNERMED-pp 3 authors · Jun 29, 2022
- LegalNLP -- Natural Language Processing methods for the Brazilian Legal Language We present and make available pre-trained language models (Phraser, Word2Vec, Doc2Vec, FastText, and BERT) for the Brazilian legal language, a Python package with functions to facilitate their use, and a set of demonstrations/tutorials containing some applications involving them. Given that our material is built upon legal texts coming from several Brazilian courts, this initiative is extremely helpful for the Brazilian legal field, which lacks other open and specific tools and language models. Our main objective is to catalyze the use of natural language processing tools for legal texts analysis by the Brazilian industry, government, and academia, providing the necessary tools and accessible material. 9 authors · Oct 5, 2021
- GR-NLP-TOOLKIT: An Open-Source NLP Toolkit for Modern Greek We present GR-NLP-TOOLKIT, an open-source natural language processing (NLP) toolkit developed specifically for modern Greek. The toolkit provides state-of-the-art performance in five core NLP tasks, namely part-of-speech tagging, morphological tagging, dependency parsing, named entity recognition, and Greeklishto-Greek transliteration. The toolkit is based on pre-trained Transformers, it is freely available, and can be easily installed in Python (pip install gr-nlp-toolkit). It is also accessible through a demonstration platform on HuggingFace, along with a publicly available API for non-commercial use. We discuss the functionality provided for each task, the underlying methods, experiments against comparable open-source toolkits, and future possible enhancements. The toolkit is available at: https://github.com/nlpaueb/gr-nlp-toolkit 11 authors · Dec 11, 2024
- Sicilian Translator: A Recipe for Low-Resource NMT With 17,000 pairs of Sicilian-English translated sentences, Arba Sicula developed the first neural machine translator for the Sicilian language. Using small subword vocabularies, we trained small Transformer models with high dropout parameters and achieved BLEU scores in the upper 20s. Then we supplemented our dataset with backtranslation and multilingual translation and pushed our scores into the mid 30s. We also attribute our success to incorporating theoretical information in our dataset. Prior to training, we biased the subword vocabulary towards the desinences one finds in a textbook. And we included textbook exercises in our dataset. 1 authors · Oct 5, 2021
- Statistical Machine Translation for Indian Languages: Mission Hindi This paper discusses Centre for Development of Advanced Computing Mumbai's (CDACM) submission to the NLP Tools Contest on Statistical Machine Translation in Indian Languages (ILSMT) 2014 (collocated with ICON 2014). The objective of the contest was to explore the effectiveness of Statistical Machine Translation (SMT) for Indian language to Indian language and English-Hindi machine translation. In this paper, we have proposed that suffix separation and word splitting for SMT from agglutinative languages to Hindi significantly improves over the baseline (BL). We have also shown that the factored model with reordering outperforms the phrase-based SMT for English-Hindi (\enhi). We report our work on all five pairs of languages, namely Bengali-Hindi (\bnhi), Marathi-Hindi (\mrhi), Tamil-Hindi (\tahi), Telugu-Hindi (\tehi), and \enhi for Health, Tourism, and General domains. 3 authors · Oct 24, 2016
- Data and Representation for Turkish Natural Language Inference Large annotated datasets in NLP are overwhelmingly in English. This is an obstacle to progress in other languages. Unfortunately, obtaining new annotated resources for each task in each language would be prohibitively expensive. At the same time, commercial machine translation systems are now robust. Can we leverage these systems to translate English-language datasets automatically? In this paper, we offer a positive response for natural language inference (NLI) in Turkish. We translated two large English NLI datasets into Turkish and had a team of experts validate their translation quality and fidelity to the original labels. Using these datasets, we address core issues of representation for Turkish NLI. We find that in-language embeddings are essential and that morphological parsing can be avoided where the training set is large. Finally, we show that models trained on our machine-translated datasets are successful on human-translated evaluation sets. We share all code, models, and data publicly. 4 authors · Apr 30, 2020
- MiniF2F in Rocq: Automatic Translation Between Proof Assistants -- A Case Study In this work, we conduct an experiment using state-of-the-art LLMs to translate MiniF2F into Rocq. The translation task focuses on generating a Rocq theorem based on three sources: a natural language description, the Lean formalization, and the Isabelle formalization. We conducted our experiment in 3 stages of increasing complexity, from basic one-shot prompting to multi-turn conversations that incorporate feedback from unsuccessful attempts. At each stage, we perform multiple rounds of translation using increasingly advanced models: GPT-4o mini, Claude 3.5 Sonnet, o1 mini, and o1. We successfully translated 478 out of 488 theorems. The dataset is opensource: https://github.com/LLM4Rocq/miniF2F-rocq. 4 authors · Feb 11, 2025
- mMARCO: A Multilingual Version of the MS MARCO Passage Ranking Dataset The MS MARCO ranking dataset has been widely used for training deep learning models for IR tasks, achieving considerable effectiveness on diverse zero-shot scenarios. However, this type of resource is scarce in languages other than English. In this work, we present mMARCO, a multilingual version of the MS MARCO passage ranking dataset comprising 13 languages that was created using machine translation. We evaluated mMARCO by finetuning monolingual and multilingual reranking models, as well as a multilingual dense retrieval model on this dataset. We also evaluated models finetuned using the mMARCO dataset in a zero-shot scenario on Mr. TyDi dataset, demonstrating that multilingual models finetuned on our translated dataset achieve superior effectiveness to models finetuned on the original English version alone. Our experiments also show that a distilled multilingual reranker is competitive with non-distilled models while having 5.4 times fewer parameters. Lastly, we show a positive correlation between translation quality and retrieval effectiveness, providing evidence that improvements in translation methods might lead to improvements in multilingual information retrieval. The translated datasets and finetuned models are available at https://github.com/unicamp-dl/mMARCO. 7 authors · Aug 31, 2021
2 Multilingual Sentence-Level Semantic Search using Meta-Distillation Learning Multilingual semantic search is the task of retrieving relevant contents to a query expressed in different language combinations. This requires a better semantic understanding of the user's intent and its contextual meaning. Multilingual semantic search is less explored and more challenging than its monolingual or bilingual counterparts, due to the lack of multilingual parallel resources for this task and the need to circumvent "language bias". In this work, we propose an alignment approach: MAML-Align, specifically for low-resource scenarios. Our approach leverages meta-distillation learning based on MAML, an optimization-based Model-Agnostic Meta-Learner. MAML-Align distills knowledge from a Teacher meta-transfer model T-MAML, specialized in transferring from monolingual to bilingual semantic search, to a Student model S-MAML, which meta-transfers from bilingual to multilingual semantic search. To the best of our knowledge, we are the first to extend meta-distillation to a multilingual search application. Our empirical results show that on top of a strong baseline based on sentence transformers, our meta-distillation approach boosts the gains provided by MAML and significantly outperforms naive fine-tuning methods. Furthermore, multilingual meta-distillation learning improves generalization even to unseen languages. 5 authors · Sep 15, 2023
- Efficient Machine Translation Corpus Generation: Integrating Human-in-the-Loop Post-Editing with Large Language Models This paper introduces an advanced methodology for machine translation (MT) corpus generation, integrating semi-automated, human-in-the-loop post-editing with large language models (LLMs) to enhance efficiency and translation quality. Building upon previous work that utilized real-time training of a custom MT quality estimation metric, this system incorporates novel LLM features such as Enhanced Translation Synthesis and Assisted Annotation Analysis, which improve initial translation hypotheses and quality assessments, respectively. Additionally, the system employs LLM-Driven Pseudo Labeling and a Translation Recommendation System to reduce human annotator workload in specific contexts. These improvements not only retain the original benefits of cost reduction and enhanced post-edit quality but also open new avenues for leveraging cutting-edge LLM advancements. The project's source code is available for community use, promoting collaborative developments in the field. The demo video can be accessed here. 4 authors · Feb 18, 2025
- Towards Systematic Monolingual NLP Surveys: GenA of Greek NLP Natural Language Processing (NLP) research has traditionally been predominantly focused on English, driven by the availability of resources, the size of the research community, and market demands. Recently, there has been a noticeable shift towards multilingualism in NLP, recognizing the need for inclusivity and effectiveness across diverse languages and cultures. Monolingual surveys have the potential to complement the broader trend towards multilingualism in NLP by providing foundational insights and resources, necessary for effectively addressing the linguistic diversity of global communication. However, monolingual NLP surveys are extremely rare in the literature. This study introduces a generalizable methodology for creating systematic and comprehensive monolingual NLP surveys, aimed at optimizing the process of constructing such surveys and thoroughly addressing a language's NLP support. Our approach integrates a structured search protocol to avoid selection bias and ensure reproducibility, an NLP task taxonomy to organize the surveyed material coherently, and language resources (LRs) taxonomies to identify potential benchmarks and highlight opportunities for improving resource availability (e.g., through better maintenance or licensing). We apply this methodology to Greek NLP (2012-2023), providing a comprehensive overview of its current state and challenges. We discuss the progress of Greek NLP and outline the Greek LRs found, classified by availability and usability, assessing language support per NLP task. The presented systematic literature review of Greek NLP serves as an application of our method that showcases the benefits of monolingual NLP surveys more broadly. Similar applications could be considered for the myriads of languages whose progress in NLP lags behind that of well-supported languages. 4 authors · Jul 13, 2024
1 Neural Machine Translation for Code Generation Neural machine translation (NMT) methods developed for natural language processing have been shown to be highly successful in automating translation from one natural language to another. Recently, these NMT methods have been adapted to the generation of program code. In NMT for code generation, the task is to generate output source code that satisfies constraints expressed in the input. In the literature, a variety of different input scenarios have been explored, including generating code based on natural language description, lower-level representations such as binary or assembly (neural decompilation), partial representations of source code (code completion and repair), and source code in another language (code translation). In this paper we survey the NMT for code generation literature, cataloging the variety of methods that have been explored according to input and output representations, model architectures, optimization techniques used, data sets, and evaluation methods. We discuss the limitations of existing methods and future research directions 2 authors · May 22, 2023