new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 18

Small-scale proxies for large-scale Transformer training instabilities

Teams that have trained large Transformer-based models have reported training instabilities at large scale that did not appear when training with the same hyperparameters at smaller scales. Although the causes of such instabilities are of scientific interest, the amount of resources required to reproduce them has made investigation difficult. In this work, we seek ways to reproduce and study training stability and instability at smaller scales. First, we focus on two sources of training instability described in previous work: the growth of logits in attention layers (Dehghani et al., 2023) and divergence of the output logits from the log probabilities (Chowdhery et al., 2022). By measuring the relationship between learning rate and loss across scales, we show that these instabilities also appear in small models when training at high learning rates, and that mitigations previously employed at large scales are equally effective in this regime. This prompts us to investigate the extent to which other known optimizer and model interventions influence the sensitivity of the final loss to changes in the learning rate. To this end, we study methods such as warm-up, weight decay, and the muParam (Yang et al., 2022), and combine techniques to train small models that achieve similar losses across orders of magnitude of learning rate variation. Finally, to conclude our exploration we study two cases where instabilities can be predicted before they emerge by examining the scaling behavior of model activation and gradient norms.

  • 16 authors
·
Sep 25, 2023 2

EAGAN: Efficient Two-stage Evolutionary Architecture Search for GANs

Generative adversarial networks (GANs) have proven successful in image generation tasks. However, GAN training is inherently unstable. Although many works try to stabilize it by manually modifying GAN architecture, it requires much expertise. Neural architecture search (NAS) has become an attractive solution to search GANs automatically. The early NAS-GANs search only generators to reduce search complexity but lead to a sub-optimal GAN. Some recent works try to search both generator (G) and discriminator (D), but they suffer from the instability of GAN training. To alleviate the instability, we propose an efficient two-stage evolutionary algorithm-based NAS framework to search GANs, namely EAGAN. We decouple the search of G and D into two stages, where stage-1 searches G with a fixed D and adopts the many-to-one training strategy, and stage-2 searches D with the optimal G found in stage-1 and adopts the one-to-one training and weight-resetting strategies to enhance the stability of GAN training. Both stages use the non-dominated sorting method to produce Pareto-front architectures under multiple objectives (e.g., model size, Inception Score (IS), and Fr\'echet Inception Distance (FID)). EAGAN is applied to the unconditional image generation task and can efficiently finish the search on the CIFAR-10 dataset in 1.2 GPU days. Our searched GANs achieve competitive results (IS=8.81pm0.10, FID=9.91) on the CIFAR-10 dataset and surpass prior NAS-GANs on the STL-10 dataset (IS=10.44pm0.087, FID=22.18). Source code: https://github.com/marsggbo/EAGAN.

  • 5 authors
·
Nov 29, 2021

Are We Really Learning the Score Function? Reinterpreting Diffusion Models Through Wasserstein Gradient Flow Matching

Diffusion models are commonly interpreted as learning the score function, i.e., the gradient of the log-density of noisy data. However, this assumption implies that the target of learning is a conservative vector field, which is not enforced by the neural network architectures used in practice. We present numerical evidence that trained diffusion networks violate both integral and differential constraints required of true score functions, demonstrating that the learned vector fields are not conservative. Despite this, the models perform remarkably well as generative mechanisms. To explain this apparent paradox, we advocate a new theoretical perspective: diffusion training is better understood as flow matching to the velocity field of a Wasserstein Gradient Flow (WGF), rather than as score learning for a reverse-time stochastic differential equation. Under this view, the "probability flow" arises naturally from the WGF framework, eliminating the need to invoke reverse-time SDE theory and clarifying why generative sampling remains successful even when the neural vector field is not a true score. We further show that non-conservative errors from neural approximation do not necessarily harm density transport. Our results advocate for adopting the WGF perspective as a principled, elegant, and theoretically grounded framework for understanding diffusion generative models.

  • 4 authors
·
Aug 29, 2025

The Implicit Regularization of Dynamical Stability in Stochastic Gradient Descent

In this paper, we study the implicit regularization of stochastic gradient descent (SGD) through the lens of {\em dynamical stability} (Wu et al., 2018). We start by revising existing stability analyses of SGD, showing how the Frobenius norm and trace of Hessian relate to different notions of stability. Notably, if a global minimum is linearly stable for SGD, then the trace of Hessian must be less than or equal to 2/eta, where eta denotes the learning rate. By contrast, for gradient descent (GD), the stability imposes a similar constraint but only on the largest eigenvalue of Hessian. We then turn to analyze the generalization properties of these stable minima, focusing specifically on two-layer ReLU networks and diagonal linear networks. Notably, we establish the {\em equivalence} between these metrics of sharpness and certain parameter norms for the two models, which allows us to show that the stable minima of SGD provably generalize well. By contrast, the stability-induced regularization of GD is provably too weak to ensure satisfactory generalization. This discrepancy provides an explanation of why SGD often generalizes better than GD. Note that the learning rate (LR) plays a pivotal role in the strength of stability-induced regularization. As the LR increases, the regularization effect becomes more pronounced, elucidating why SGD with a larger LR consistently demonstrates superior generalization capabilities. Additionally, numerical experiments are provided to support our theoretical findings.

  • 2 authors
·
May 27, 2023

RAAG: Ratio Aware Adaptive Guidance

Flow-based generative models have achieved remarkable progress, with classifier-free guidance (CFG) becoming the standard for high-fidelity generation. However, the conventional practice of applying a strong, fixed guidance scale throughout inference is poorly suited for the rapid, few-step sampling required by modern applications. In this work, we uncover the root cause of this conflict: a fundamental sampling instability where the earliest steps are acutely sensitive to guidance. We trace this to a significant spike in the ratio of conditional to unconditional predictions--a spike that we prove to be an inherent property of the training data distribution itself, making it a almost inevitable challenge. Applying a high, static guidance value during this volatile initial phase leads to an exponential amplification of error, degrading image quality. To resolve this, we propose a simple, theoretically grounded, adaptive guidance schedule that automatically dampens the guidance scale at early steps based on the evolving ratio. Our method is lightweight, incurs no inference overhead, and is compatible with standard frameworks. Experiments across state-of-the-art image (SD3.5, Qwen-Image) and video (WAN2.1) models show our approach enables up to 3x faster sampling while maintaining or improving quality, robustness, and semantic alignment. Our findings highlight that adapting guidance to the sampling process, rather than fixing it, is critical for unlocking the full potential of fast, flow-based models.

  • 10 authors
·
Aug 5, 2025

Curl Descent: Non-Gradient Learning Dynamics with Sign-Diverse Plasticity

Gradient-based algorithms are a cornerstone of artificial neural network training, yet it remains unclear whether biological neural networks use similar gradient-based strategies during learning. Experiments often discover a diversity of synaptic plasticity rules, but whether these amount to an approximation to gradient descent is unclear. Here we investigate a previously overlooked possibility: that learning dynamics may include fundamentally non-gradient "curl"-like components while still being able to effectively optimize a loss function. Curl terms naturally emerge in networks with inhibitory-excitatory connectivity or Hebbian/anti-Hebbian plasticity, resulting in learning dynamics that cannot be framed as gradient descent on any objective. To investigate the impact of these curl terms, we analyze feedforward networks within an analytically tractable student-teacher framework, systematically introducing non-gradient dynamics through neurons exhibiting rule-flipped plasticity. Small curl terms preserve the stability of the original solution manifold, resulting in learning dynamics similar to gradient descent. Beyond a critical value, strong curl terms destabilize the solution manifold. Depending on the network architecture, this loss of stability can lead to chaotic learning dynamics that destroy performance. In other cases, the curl terms can counterintuitively speed learning compared to gradient descent by allowing the weight dynamics to escape saddles by temporarily ascending the loss. Our results identify specific architectures capable of supporting robust learning via diverse learning rules, providing an important counterpoint to normative theories of gradient-based learning in neural networks.

  • 3 authors
·
Oct 3, 2025

DRIFT-Net: A Spectral--Coupled Neural Operator for PDEs Learning

Learning PDE dynamics with neural solvers can significantly improve wall-clock efficiency and accuracy compared with classical numerical solvers. In recent years, foundation models for PDEs have largely adopted multi-scale windowed self-attention, with the scOT backbone in Poseidon serving as a representative example. However, because of their locality, truly globally consistent spectral coupling can only be propagated gradually through deep stacking and window shifting. This weakens global coupling and leads to error accumulation and drift during closed-loop rollouts. To address this, we propose DRIFT-Net. It employs a dual-branch design comprising a spectral branch and an image branch. The spectral branch is responsible for capturing global, large-scale low-frequency information, whereas the image branch focuses on local details and nonstationary structures. Specifically, we first perform controlled, lightweight mixing within the low-frequency range. Then we fuse the spectral and image paths at each layer via bandwise weighting, which avoids the width inflation and training instability caused by naive concatenation. The fused result is transformed back into the spatial domain and added to the image branch, thereby preserving both global structure and high-frequency details across scales. Compared with strong attention-based baselines, DRIFT-Net achieves lower error and higher throughput with fewer parameters under identical training settings and budget. On Navier--Stokes benchmarks, the relative L_{1} error is reduced by 7\%--54\%, the parameter count decreases by about 15\%, and the throughput remains higher than scOT. Ablation studies and theoretical analyses further demonstrate the stability and effectiveness of this design. The code is available at https://github.com/cruiseresearchgroup/DRIFT-Net.

Lagrangian PINNs: A causality-conforming solution to failure modes of physics-informed neural networks

Physics-informed neural networks (PINNs) leverage neural-networks to find the solutions of partial differential equation (PDE)-constrained optimization problems with initial conditions and boundary conditions as soft constraints. These soft constraints are often considered to be the sources of the complexity in the training phase of PINNs. Here, we demonstrate that the challenge of training (i) persists even when the boundary conditions are strictly enforced, and (ii) is closely related to the Kolmogorov n-width associated with problems demonstrating transport, convection, traveling waves, or moving fronts. Given this realization, we describe the mechanism underlying the training schemes such as those used in eXtended PINNs (XPINN), curriculum regularization, and sequence-to-sequence learning. For an important category of PDEs, i.e., governed by non-linear convection-diffusion equation, we propose reformulating PINNs on a Lagrangian frame of reference, i.e., LPINNs, as a PDE-informed solution. A parallel architecture with two branches is proposed. One branch solves for the state variables on the characteristics, and the second branch solves for the low-dimensional characteristics curves. The proposed architecture conforms to the causality innate to the convection, and leverages the direction of travel of the information in the domain. Finally, we demonstrate that the loss landscapes of LPINNs are less sensitive to the so-called "complexity" of the problems, compared to those in the traditional PINNs in the Eulerian framework.

  • 3 authors
·
May 5, 2022

SPAM: Spike-Aware Adam with Momentum Reset for Stable LLM Training

Large Language Models (LLMs) have demonstrated exceptional performance across diverse tasks, yet their training remains highly resource-intensive and susceptible to critical challenges such as training instability. A predominant source of this instability stems from gradient and loss spikes, which disrupt the learning process, often leading to costly interventions like checkpoint recovery and experiment restarts, further amplifying inefficiencies. This paper presents a comprehensive investigation into gradient spikes observed during LLM training, revealing their prevalence across multiple architectures and datasets. Our analysis shows that these spikes can be up to 1000times larger than typical gradients, substantially deteriorating model performance. To address this issue, we propose Spike-Aware Adam with Momentum Reset SPAM, a novel optimizer designed to counteract gradient spikes through momentum reset and spike-aware gradient clipping. Extensive experiments, including both pre-training and fine-tuning, demonstrate that SPAM consistently surpasses Adam and its variants across various tasks, including (1) LLM pre-training from 60M to 1B, (2) 4-bit LLM pre-training,(3) reinforcement learning, and (4) Time Series Forecasting. Additionally, SPAM facilitates memory-efficient training by enabling sparse momentum, where only a subset of momentum terms are maintained and updated. When operating under memory constraints, SPAM outperforms state-of-the-art memory-efficient optimizers such as GaLore and Adam-Mini. Our work underscores the importance of mitigating gradient spikes in LLM training and introduces an effective optimization strategy that enhances both training stability and resource efficiency at scale. Code is available at https://github.com/TianjinYellow/SPAM-Optimizer.git

  • 6 authors
·
Jan 12, 2025 2

SimpleTIR: End-to-End Reinforcement Learning for Multi-Turn Tool-Integrated Reasoning

Large Language Models (LLMs) can significantly improve their reasoning capabilities by interacting with external tools, a paradigm known as Tool-Integrated Reasoning (TIR). However, extending TIR to multi-turn scenarios using Reinforcement Learning (RL) is often hindered by training instability and performance collapse. We identify that such instability is primarily caused by a distributional drift from external tool feedback, leading to the generation of low-probability tokens. This issue compounds over successive turns, causing catastrophic gradient norm explosions that derail the training process. To address this challenge, we introduce SimpleTIR , a plug-and-play algorithm that stabilizes multi-turn TIR training. Its core strategy is to identify and filter out trajectories containing void turns, i.e., turns that yield neither a code block nor a final answer. By removing these problematic trajectories from the policy update, SimpleTIR effectively blocks the harmful, high-magnitude gradients, thus stabilizing the learning dynamics. Extensive experiments show that SimpleTIR achieves state-of-the-art performance on challenging math reasoning benchmarks, notably elevating the AIME24 score from a text-only baseline of 22.1 to 50.5 when starting from the Qwen2.5-7B base model. Furthermore, by avoiding the constraints of supervised fine-tuning, SimpleTIR encourages the model to discover diverse and sophisticated reasoning patterns, such as self-correction and cross-validation.

  • 7 authors
·
Sep 2, 2025 2

Magnitude Invariant Parametrizations Improve Hypernetwork Learning

Hypernetworks, neural networks that predict the parameters of another neural network, are powerful models that have been successfully used in diverse applications from image generation to multi-task learning. Unfortunately, existing hypernetworks are often challenging to train. Training typically converges far more slowly than for non-hypernetwork models, and the rate of convergence can be very sensitive to hyperparameter choices. In this work, we identify a fundamental and previously unidentified problem that contributes to the challenge of training hypernetworks: a magnitude proportionality between the inputs and outputs of the hypernetwork. We demonstrate both analytically and empirically that this can lead to unstable optimization, thereby slowing down convergence, and sometimes even preventing any learning. We present a simple solution to this problem using a revised hypernetwork formulation that we call Magnitude Invariant Parametrizations (MIP). We demonstrate the proposed solution on several hypernetwork tasks, where it consistently stabilizes training and achieves faster convergence. Furthermore, we perform a comprehensive ablation study including choices of activation function, normalization strategies, input dimensionality, and hypernetwork architecture; and find that MIP improves training in all scenarios. We provide easy-to-use code that can turn existing networks into MIP-based hypernetworks.

  • 3 authors
·
Apr 15, 2023

R^3L: Reflect-then-Retry Reinforcement Learning with Language-Guided Exploration, Pivotal Credit, and Positive Amplification

Reinforcement learning drives recent advances in LLM reasoning and agentic capabilities, yet current approaches struggle with both exploration and exploitation. Exploration suffers from low success rates on difficult tasks and high costs of repeated rollouts from scratch. Exploitation suffers from coarse credit assignment and training instability: Trajectory-level rewards penalize valid prefixes for later errors, and failure-dominated groups overwhelm the few positive signals, leaving optimization without constructive direction. To this end, we propose R^3L, Reflect-then-Retry Reinforcement Learning with Language-Guided Exploration, Pivotal Credit, and Positive Amplification. To synthesize high-quality trajectories, R^3L shifts from stochastic sampling to active synthesis via reflect-then-retry, leveraging language feedback to diagnose errors, transform failed attempts into successful ones, and reduce rollout costs by restarting from identified failure points. With errors diagnosed and localized, Pivotal Credit Assignment updates only the diverging suffix where contrastive signals exist, excluding the shared prefix from gradient update. Since failures dominate on difficult tasks and reflect-then-retry produces off-policy data, risking training instability, Positive Amplification upweights successful trajectories to ensure positive signals guide the optimization process. Experiments on agentic and reasoning tasks demonstrate 5\% to 52\% relative improvements over baselines while maintaining training stability. Our code is released at https://github.com/shiweijiezero/R3L.

ScaleLong: Towards More Stable Training of Diffusion Model via Scaling Network Long Skip Connection

In diffusion models, UNet is the most popular network backbone, since its long skip connects (LSCs) to connect distant network blocks can aggregate long-distant information and alleviate vanishing gradient. Unfortunately, UNet often suffers from unstable training in diffusion models which can be alleviated by scaling its LSC coefficients smaller. However, theoretical understandings of the instability of UNet in diffusion models and also the performance improvement of LSC scaling remain absent yet. To solve this issue, we theoretically show that the coefficients of LSCs in UNet have big effects on the stableness of the forward and backward propagation and robustness of UNet. Specifically, the hidden feature and gradient of UNet at any layer can oscillate and their oscillation ranges are actually large which explains the instability of UNet training. Moreover, UNet is also provably sensitive to perturbed input, and predicts an output distant from the desired output, yielding oscillatory loss and thus oscillatory gradient. Besides, we also observe the theoretical benefits of the LSC coefficient scaling of UNet in the stableness of hidden features and gradient and also robustness. Finally, inspired by our theory, we propose an effective coefficient scaling framework ScaleLong that scales the coefficients of LSC in UNet and better improves the training stability of UNet. Experimental results on four famous datasets show that our methods are superior to stabilize training and yield about 1.5x training acceleration on different diffusion models with UNet or UViT backbones. Code: https://github.com/sail-sg/ScaleLong

  • 4 authors
·
Oct 20, 2023 1

Empirical Analysis of the Hessian of Over-Parametrized Neural Networks

We study the properties of common loss surfaces through their Hessian matrix. In particular, in the context of deep learning, we empirically show that the spectrum of the Hessian is composed of two parts: (1) the bulk centered near zero, (2) and outliers away from the bulk. We present numerical evidence and mathematical justifications to the following conjectures laid out by Sagun et al. (2016): Fixing data, increasing the number of parameters merely scales the bulk of the spectrum; fixing the dimension and changing the data (for instance adding more clusters or making the data less separable) only affects the outliers. We believe that our observations have striking implications for non-convex optimization in high dimensions. First, the flatness of such landscapes (which can be measured by the singularity of the Hessian) implies that classical notions of basins of attraction may be quite misleading. And that the discussion of wide/narrow basins may be in need of a new perspective around over-parametrization and redundancy that are able to create large connected components at the bottom of the landscape. Second, the dependence of small number of large eigenvalues to the data distribution can be linked to the spectrum of the covariance matrix of gradients of model outputs. With this in mind, we may reevaluate the connections within the data-architecture-algorithm framework of a model, hoping that it would shed light into the geometry of high-dimensional and non-convex spaces in modern applications. In particular, we present a case that links the two observations: small and large batch gradient descent appear to converge to different basins of attraction but we show that they are in fact connected through their flat region and so belong to the same basin.

  • 5 authors
·
Jun 14, 2017

Rectified Diffusion: Straightness Is Not Your Need in Rectified Flow

Diffusion models have greatly improved visual generation but are hindered by slow generation speed due to the computationally intensive nature of solving generative ODEs. Rectified flow, a widely recognized solution, improves generation speed by straightening the ODE path. Its key components include: 1) using the diffusion form of flow-matching, 2) employing boldsymbol v-prediction, and 3) performing rectification (a.k.a. reflow). In this paper, we argue that the success of rectification primarily lies in using a pretrained diffusion model to obtain matched pairs of noise and samples, followed by retraining with these matched noise-sample pairs. Based on this, components 1) and 2) are unnecessary. Furthermore, we highlight that straightness is not an essential training target for rectification; rather, it is a specific case of flow-matching models. The more critical training target is to achieve a first-order approximate ODE path, which is inherently curved for models like DDPM and Sub-VP. Building on this insight, we propose Rectified Diffusion, which generalizes the design space and application scope of rectification to encompass the broader category of diffusion models, rather than being restricted to flow-matching models. We validate our method on Stable Diffusion v1-5 and Stable Diffusion XL. Our method not only greatly simplifies the training procedure of rectified flow-based previous works (e.g., InstaFlow) but also achieves superior performance with even lower training cost. Our code is available at https://github.com/G-U-N/Rectified-Diffusion.

  • 5 authors
·
Oct 9, 2024 3

Better Source, Better Flow: Learning Condition-Dependent Source Distribution for Flow Matching

Flow matching has recently emerged as a promising alternative to diffusion-based generative models, particularly for text-to-image generation. Despite its flexibility in allowing arbitrary source distributions, most existing approaches rely on a standard Gaussian distribution, a choice inherited from diffusion models, and rarely consider the source distribution itself as an optimization target in such settings. In this work, we show that principled design of the source distribution is not only feasible but also beneficial at the scale of modern text-to-image systems. Specifically, we propose learning a condition-dependent source distribution under flow matching objective that better exploit rich conditioning signals. We identify key failure modes that arise when directly incorporating conditioning into the source, including distributional collapse and instability, and show that appropriate variance regularization and directional alignment between source and target are critical for stable and effective learning. We further analyze how the choice of target representation space impacts flow matching with structured sources, revealing regimes in which such designs are most effective. Extensive experiments across multiple text-to-image benchmarks demonstrate consistent and robust improvements, including up to a 3x faster convergence in FID, highlighting the practical benefits of a principled source distribution design for conditional flow matching.

  • 4 authors
·
Feb 5

"I May Not Have Articulated Myself Clearly": Diagnosing Dynamic Instability in LLM Reasoning at Inference Time

Reasoning failures in large language models (LLMs) are typically measured only at the end of a generation, yet many failures manifest as a process-level breakdown: the model "loses the thread" mid-reasoning. We study whether such breakdowns are detectable from inference-time observables available in standard APIs (token log probabilities), without any training or fine-tuning. We define a simple instability signal that combines consecutive-step distributional shift (JSD) and uncertainty (entropy), summarize each trace by its peak instability strength, and show that this signal reliably predicts failure. Across GSM8K and HotpotQA, instability strength predicts wrong answers with above-chance AUC and yields monotonic bucket-level accuracy decline at scale across model sizes. Crucially, we show that instability is not uniformly harmful: early instability can reflect subsequent stabilization and a correct final answer (corrective instability), whereas late instability is more often followed by failure (destructive instability), even at comparable peak magnitudes, indicating that recoverability depends not only on how strongly the distribution changes but also on when such changes occur relative to the remaining decoding horizon. The method is model-agnostic, training-free, and reproducible, and is presented as a diagnostic lens rather than a corrective or control mechanism.

SADA: Stability-guided Adaptive Diffusion Acceleration

Diffusion models have achieved remarkable success in generative tasks but suffer from high computational costs due to their iterative sampling process and quadratic attention costs. Existing training-free acceleration strategies that reduce per-step computation cost, while effectively reducing sampling time, demonstrate low faithfulness compared to the original baseline. We hypothesize that this fidelity gap arises because (a) different prompts correspond to varying denoising trajectory, and (b) such methods do not consider the underlying ODE formulation and its numerical solution. In this paper, we propose Stability-guided Adaptive Diffusion Acceleration (SADA), a novel paradigm that unifies step-wise and token-wise sparsity decisions via a single stability criterion to accelerate sampling of ODE-based generative models (Diffusion and Flow-matching). For (a), SADA adaptively allocates sparsity based on the sampling trajectory. For (b), SADA introduces principled approximation schemes that leverage the precise gradient information from the numerical ODE solver. Comprehensive evaluations on SD-2, SDXL, and Flux using both EDM and DPM++ solvers reveal consistent ge 1.8times speedups with minimal fidelity degradation (LPIPS leq 0.10 and FID leq 4.5) compared to unmodified baselines, significantly outperforming prior methods. Moreover, SADA adapts seamlessly to other pipelines and modalities: It accelerates ControlNet without any modifications and speeds up MusicLDM by 1.8times with sim 0.01 spectrogram LPIPS.

  • 10 authors
·
Jul 22, 2025

Fine-tuning Flow Matching Generative Models with Intermediate Feedback

Flow-based generative models have shown remarkable success in text-to-image generation, yet fine-tuning them with intermediate feedback remains challenging, especially for continuous-time flow matching models. Most existing approaches solely learn from outcome rewards, struggling with the credit assignment problem. Alternative methods that attempt to learn a critic via direct regression on cumulative rewards often face training instabilities and model collapse in online settings. We present AC-Flow, a robust actor-critic framework that addresses these challenges through three key innovations: (1) reward shaping that provides well-normalized learning signals to enable stable intermediate value learning and gradient control, (2) a novel dual-stability mechanism that combines advantage clipping to prevent destructive policy updates with a warm-up phase that allows the critic to mature before influencing the actor, and (3) a scalable generalized critic weighting scheme that extends traditional reward-weighted methods while preserving model diversity through Wasserstein regularization. Through extensive experiments on Stable Diffusion 3, we demonstrate that AC-Flow achieves state-of-the-art performance in text-to-image alignment tasks and generalization to unseen human preference models. Our results demonstrate that even with a computationally efficient critic model, we can robustly finetune flow models without compromising generative quality, diversity, or stability.

  • 5 authors
·
Oct 20, 2025

ArcFlow: Unleashing 2-Step Text-to-Image Generation via High-Precision Non-Linear Flow Distillation

Diffusion models have achieved remarkable generation quality, but they suffer from significant inference cost due to their reliance on multiple sequential denoising steps, motivating recent efforts to distill this inference process into a few-step regime. However, existing distillation methods typically approximate the teacher trajectory by using linear shortcuts, which makes it difficult to match its constantly changing tangent directions as velocities evolve across timesteps, thereby leading to quality degradation. To address this limitation, we propose ArcFlow, a few-step distillation framework that explicitly employs non-linear flow trajectories to approximate pre-trained teacher trajectories. Concretely, ArcFlow parameterizes the velocity field underlying the inference trajectory as a mixture of continuous momentum processes. This enables ArcFlow to capture velocity evolution and extrapolate coherent velocities to form a continuous non-linear trajectory within each denoising step. Importantly, this parameterization admits an analytical integration of this non-linear trajectory, which circumvents numerical discretization errors and results in high-precision approximation of the teacher trajectory. To train this parameterization into a few-step generator, we implement ArcFlow via trajectory distillation on pre-trained teacher models using lightweight adapters. This strategy ensures fast, stable convergence while preserving generative diversity and quality. Built on large-scale models (Qwen-Image-20B and FLUX.1-dev), ArcFlow only fine-tunes on less than 5% of original parameters and achieves a 40x speedup with 2 NFEs over the original multi-step teachers without significant quality degradation. Experiments on benchmarks show the effectiveness of ArcFlow both qualitatively and quantitatively.

GoRL: An Algorithm-Agnostic Framework for Online Reinforcement Learning with Generative Policies

Reinforcement learning (RL) faces a persistent tension: policies that are stable to optimize are often too simple to represent the multimodal action distributions needed for complex control. Gaussian policies provide tractable likelihoods and smooth gradients, but their unimodal form limits expressiveness. Conversely, generative policies based on diffusion or flow matching can model rich multimodal behaviors; however, in online RL, they are frequently unstable due to intractable likelihoods and noisy gradients propagating through deep sampling chains. We address this tension with a key structural principle: decoupling optimization from generation. Building on this insight, we introduce GoRL (Generative Online Reinforcement Learning), a framework that optimizes a tractable latent policy while utilizing a conditional generative decoder to synthesize actions. A two-timescale update schedule enables the latent policy to learn stably while the decoder steadily increases expressiveness, without requiring tractable action likelihoods. Across a range of continuous-control tasks, GoRL consistently outperforms both Gaussian policies and recent generative-policy baselines. Notably, on the HopperStand task, it reaches a normalized return above 870, more than 3 times that of the strongest baseline. These results demonstrate that separating optimization from generation provides a practical path to policies that are both stable and highly expressive.

Robust Collaborative Learning with Linear Gradient Overhead

Collaborative learning algorithms, such as distributed SGD (or D-SGD), are prone to faulty machines that may deviate from their prescribed algorithm because of software or hardware bugs, poisoned data or malicious behaviors. While many solutions have been proposed to enhance the robustness of D-SGD to such machines, previous works either resort to strong assumptions (trusted server, homogeneous data, specific noise model) or impose a gradient computational cost that is several orders of magnitude higher than that of D-SGD. We present MoNNA, a new algorithm that (a) is provably robust under standard assumptions and (b) has a gradient computation overhead that is linear in the fraction of faulty machines, which is conjectured to be tight. Essentially, MoNNA uses Polyak's momentum of local gradients for local updates and nearest-neighbor averaging (NNA) for global mixing, respectively. While MoNNA is rather simple to implement, its analysis has been more challenging and relies on two key elements that may be of independent interest. Specifically, we introduce the mixing criterion of (alpha, lambda)-reduction to analyze the non-linear mixing of non-faulty machines, and present a way to control the tension between the momentum and the model drifts. We validate our theory by experiments on image classification and make our code available at https://github.com/LPD-EPFL/robust-collaborative-learning.

  • 6 authors
·
Sep 22, 2022

The Principles of Diffusion Models

This monograph presents the core principles that have guided the development of diffusion models, tracing their origins and showing how diverse formulations arise from shared mathematical ideas. Diffusion modeling starts by defining a forward process that gradually corrupts data into noise, linking the data distribution to a simple prior through a continuum of intermediate distributions. The goal is to learn a reverse process that transforms noise back into data while recovering the same intermediates. We describe three complementary views. The variational view, inspired by variational autoencoders, sees diffusion as learning to remove noise step by step. The score-based view, rooted in energy-based modeling, learns the gradient of the evolving data distribution, indicating how to nudge samples toward more likely regions. The flow-based view, related to normalizing flows, treats generation as following a smooth path that moves samples from noise to data under a learned velocity field. These perspectives share a common backbone: a time-dependent velocity field whose flow transports a simple prior to the data. Sampling then amounts to solving a differential equation that evolves noise into data along a continuous trajectory. On this foundation, the monograph discusses guidance for controllable generation, efficient numerical solvers, and diffusion-motivated flow-map models that learn direct mappings between arbitrary times. It provides a conceptual and mathematically grounded understanding of diffusion models for readers with basic deep-learning knowledge.

  • 5 authors
·
Oct 23, 2025 3

Reduced-Order Neural Operators: Learning Lagrangian Dynamics on Highly Sparse Graphs

We present a neural operator architecture to simulate Lagrangian dynamics, such as fluid flow, granular flows, and elastoplasticity. Traditional numerical methods, such as the finite element method (FEM), suffer from long run times and large memory consumption. On the other hand, approaches based on graph neural networks are faster but still suffer from long computation times on dense graphs, which are often required for high-fidelity simulations. Our model, GIOROM or Graph Interaction Operator for Reduced-Order Modeling, learns temporal dynamics within a reduced-order setting, capturing spatial features from a highly sparse graph representation of the input and generalizing to arbitrary spatial locations during inference. The model is geometry-aware and discretization-agnostic and can generalize to different initial conditions, velocities, and geometries after training. We show that point clouds of the order of 100,000 points can be inferred from sparse graphs with sim1000 points, with negligible change in computation time. We empirically evaluate our model on elastic solids, Newtonian fluids, Non-Newtonian fluids, Drucker-Prager granular flows, and von Mises elastoplasticity. On these benchmarks, our approach results in a 25times speedup compared to other neural network-based physics simulators while delivering high-fidelity predictions of complex physical systems and showing better performance on most benchmarks. The code and the demos are provided at https://github.com/HrishikeshVish/GIOROM.

  • 5 authors
·
Jul 4, 2024

On the Initialization of Graph Neural Networks

Graph Neural Networks (GNNs) have displayed considerable promise in graph representation learning across various applications. The core learning process requires the initialization of model weight matrices within each GNN layer, which is typically accomplished via classic initialization methods such as Xavier initialization. However, these methods were originally motivated to stabilize the variance of hidden embeddings and gradients across layers of Feedforward Neural Networks (FNNs) and Convolutional Neural Networks (CNNs) to avoid vanishing gradients and maintain steady information flow. In contrast, within the GNN context classical initializations disregard the impact of the input graph structure and message passing on variance. In this paper, we analyze the variance of forward and backward propagation across GNN layers and show that the variance instability of GNN initializations comes from the combined effect of the activation function, hidden dimension, graph structure and message passing. To better account for these influence factors, we propose a new initialization method for Variance Instability Reduction within GNN Optimization (Virgo), which naturally tends to equate forward and backward variances across successive layers. We conduct comprehensive experiments on 15 datasets to show that Virgo can lead to superior model performance and more stable variance at initialization on node classification, link prediction and graph classification tasks. Codes are in https://github.com/LspongebobJH/virgo_icml2023.

  • 4 authors
·
Dec 5, 2023

SplitFlow: Flow Decomposition for Inversion-Free Text-to-Image Editing

Rectified flow models have become a de facto standard in image generation due to their stable sampling trajectories and high-fidelity outputs. Despite their strong generative capabilities, they face critical limitations in image editing tasks: inaccurate inversion processes for mapping real images back into the latent space, and gradient entanglement issues during editing often result in outputs that do not faithfully reflect the target prompt. Recent efforts have attempted to directly map source and target distributions via ODE-based approaches without inversion; however,these methods still yield suboptimal editing quality. In this work, we propose a flow decomposition-and-aggregation framework built upon an inversion-free formulation to address these limitations. Specifically, we semantically decompose the target prompt into multiple sub-prompts, compute an independent flow for each, and aggregate them to form a unified editing trajectory. While we empirically observe that decomposing the original flow enhances diversity in the target space, generating semantically aligned outputs still requires consistent guidance toward the full target prompt. To this end, we design a projection and soft-aggregation mechanism for flow, inspired by gradient conflict resolution in multi-task learning. This approach adaptively weights the sub-target velocity fields, suppressing semantic redundancy while emphasizing distinct directions, thereby preserving both diversity and consistency in the final edited output. Experimental results demonstrate that our method outperforms existing zero-shot editing approaches in terms of semantic fidelity and attribute disentanglement. The code is available at https://github.com/Harvard-AI-and-Robotics-Lab/SplitFlow.

  • 6 authors
·
Oct 29, 2025

Accelerating Sinkhorn Algorithm with Sparse Newton Iterations

Computing the optimal transport distance between statistical distributions is a fundamental task in machine learning. One remarkable recent advancement is entropic regularization and the Sinkhorn algorithm, which utilizes only matrix scaling and guarantees an approximated solution with near-linear runtime. Despite the success of the Sinkhorn algorithm, its runtime may still be slow due to the potentially large number of iterations needed for convergence. To achieve possibly super-exponential convergence, we present Sinkhorn-Newton-Sparse (SNS), an extension to the Sinkhorn algorithm, by introducing early stopping for the matrix scaling steps and a second stage featuring a Newton-type subroutine. Adopting the variational viewpoint that the Sinkhorn algorithm maximizes a concave Lyapunov potential, we offer the insight that the Hessian matrix of the potential function is approximately sparse. Sparsification of the Hessian results in a fast O(n^2) per-iteration complexity, the same as the Sinkhorn algorithm. In terms of total iteration count, we observe that the SNS algorithm converges orders of magnitude faster across a wide range of practical cases, including optimal transportation between empirical distributions and calculating the Wasserstein W_1, W_2 distance of discretized densities. The empirical performance is corroborated by a rigorous bound on the approximate sparsity of the Hessian matrix.

  • 7 authors
·
Jan 20, 2024

Scaling physics-informed hard constraints with mixture-of-experts

Imposing known physical constraints, such as conservation laws, during neural network training introduces an inductive bias that can improve accuracy, reliability, convergence, and data efficiency for modeling physical dynamics. While such constraints can be softly imposed via loss function penalties, recent advancements in differentiable physics and optimization improve performance by incorporating PDE-constrained optimization as individual layers in neural networks. This enables a stricter adherence to physical constraints. However, imposing hard constraints significantly increases computational and memory costs, especially for complex dynamical systems. This is because it requires solving an optimization problem over a large number of points in a mesh, representing spatial and temporal discretizations, which greatly increases the complexity of the constraint. To address this challenge, we develop a scalable approach to enforce hard physical constraints using Mixture-of-Experts (MoE), which can be used with any neural network architecture. Our approach imposes the constraint over smaller decomposed domains, each of which is solved by an "expert" through differentiable optimization. During training, each expert independently performs a localized backpropagation step by leveraging the implicit function theorem; the independence of each expert allows for parallelization across multiple GPUs. Compared to standard differentiable optimization, our scalable approach achieves greater accuracy in the neural PDE solver setting for predicting the dynamics of challenging non-linear systems. We also improve training stability and require significantly less computation time during both training and inference stages.

  • 3 authors
·
Feb 20, 2024

CF-CAM: Cluster Filter Class Activation Mapping for Reliable Gradient-Based Interpretability

As deep learning continues to advance, the transparency of neural network decision-making remains a critical challenge, limiting trust and applicability in high-stakes domains. Class Activation Mapping (CAM) techniques have emerged as a key approach toward visualizing model decisions, yet existing methods face inherent trade-offs. Gradient-based CAM variants suffer from sensitivity to gradient perturbations due to gradient noise, leading to unstable and unreliable explanations. Conversely, gradient-free approaches mitigate gradient instability but incur significant computational overhead and inference latency. To address these limitations, we propose a Cluster Filter Class Activation Map (CF-CAM) technique, a novel framework that reintroduces gradient-based weighting while enhancing robustness against gradient noise. CF-CAM utilizes hierarchical importance weighting strategy to balance discriminative feature preservation and noise elimination. A density-aware channel clustering method via Density-Based Spatial Clustering of Applications with Noise (DBSCAN) groups semantically relevant feature channels and discard noise-prone activations. Additionally, cluster-conditioned gradient filtering leverages Gaussian filters to refine gradient signals, preserving edge-aware localization while suppressing noise impact. Experiment results demonstrate that CF-CAM achieves superior interpretability performance while enhancing computational efficiency, outperforming state-of-the-art CAM methods in faithfulness and robustness. By effectively mitigating gradient instability without excessive computational cost, CF-CAM provides a competitive solution for enhancing the interpretability of deep neural networks in critical applications such as autonomous driving and medical diagnosis.

  • 3 authors
·
Mar 31, 2025

PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers

Time-dependent partial differential equations (PDEs) are ubiquitous in science and engineering. Recently, mostly due to the high computational cost of traditional solution techniques, deep neural network based surrogates have gained increased interest. The practical utility of such neural PDE solvers relies on their ability to provide accurate, stable predictions over long time horizons, which is a notoriously hard problem. In this work, we present a large-scale analysis of common temporal rollout strategies, identifying the neglect of non-dominant spatial frequency information, often associated with high frequencies in PDE solutions, as the primary pitfall limiting stable, accurate rollout performance. Based on these insights, we draw inspiration from recent advances in diffusion models to introduce PDE-Refiner; a novel model class that enables more accurate modeling of all frequency components via a multistep refinement process. We validate PDE-Refiner on challenging benchmarks of complex fluid dynamics, demonstrating stable and accurate rollouts that consistently outperform state-of-the-art models, including neural, numerical, and hybrid neural-numerical architectures. We further demonstrate that PDE-Refiner greatly enhances data efficiency, since the denoising objective implicitly induces a novel form of spectral data augmentation. Finally, PDE-Refiner's connection to diffusion models enables an accurate and efficient assessment of the model's predictive uncertainty, allowing us to estimate when the surrogate becomes inaccurate.

  • 5 authors
·
Aug 10, 2023

Diffusion Sampling with Momentum for Mitigating Divergence Artifacts

Despite the remarkable success of diffusion models in image generation, slow sampling remains a persistent issue. To accelerate the sampling process, prior studies have reformulated diffusion sampling as an ODE/SDE and introduced higher-order numerical methods. However, these methods often produce divergence artifacts, especially with a low number of sampling steps, which limits the achievable acceleration. In this paper, we investigate the potential causes of these artifacts and suggest that the small stability regions of these methods could be the principal cause. To address this issue, we propose two novel techniques. The first technique involves the incorporation of Heavy Ball (HB) momentum, a well-known technique for improving optimization, into existing diffusion numerical methods to expand their stability regions. We also prove that the resulting methods have first-order convergence. The second technique, called Generalized Heavy Ball (GHVB), constructs a new high-order method that offers a variable trade-off between accuracy and artifact suppression. Experimental results show that our techniques are highly effective in reducing artifacts and improving image quality, surpassing state-of-the-art diffusion solvers on both pixel-based and latent-based diffusion models for low-step sampling. Our research provides novel insights into the design of numerical methods for future diffusion work.

  • 5 authors
·
Jul 20, 2023

MeanFlow Transformers with Representation Autoencoders

MeanFlow (MF) is a diffusion-motivated generative model that enables efficient few-step generation by learning long jumps directly from noise to data. In practice, it is often used as a latent MF by leveraging the pre-trained Stable Diffusion variational autoencoder (SD-VAE) for high-dimensional data modeling. However, MF training remains computationally demanding and is often unstable. During inference, the SD-VAE decoder dominates the generation cost, and MF depends on complex guidance hyperparameters for class-conditional generation. In this work, we develop an efficient training and sampling scheme for MF in the latent space of a Representation Autoencoder (RAE), where a pre-trained vision encoder (e.g., DINO) provides semantically rich latents paired with a lightweight decoder. We observe that naive MF training in the RAE latent space suffers from severe gradient explosion. To stabilize and accelerate training, we adopt Consistency Mid-Training for trajectory-aware initialization and use a two-stage scheme: distillation from a pre-trained flow matching teacher to speed convergence and reduce variance, followed by an optional bootstrapping stage with a one-point velocity estimator to further reduce deviation from the oracle mean flow. This design removes the need for guidance, simplifies training configurations, and reduces computation in both training and sampling. Empirically, our method achieves a 1-step FID of 2.03, outperforming vanilla MF's 3.43, while reducing sampling GFLOPS by 38% and total training cost by 83% on ImageNet 256. We further scale our approach to ImageNet 512, achieving a competitive 1-step FID of 3.23 with the lowest GFLOPS among all baselines. Code is available at https://github.com/sony/mf-rae.

  • 5 authors
·
Nov 17, 2025

Stabilizing Policy Gradients for Sample-Efficient Reinforcement Learning in LLM Reasoning

Reinforcement Learning, particularly through policy gradient methods, has played a central role in enabling reasoning capabilities of Large Language Models. However, the optimization stability of policy gradients in this setting remains understudied. As a result, existing implementations often resort to conservative hyperparameter choices to ensure stability, which requires more training samples and increases computational costs. Hence, developing models for reliably tracking the underlying optimization dynamics and leveraging them into training enables more sample-efficient regimes and further unleashes scalable post-training. We address this gap by formalizing the stochastic optimization problem of policy gradients with explicit consideration of second-order geometry. We propose a tractable computational framework that tracks and leverages curvature information during policy updates. We further employ this framework to design interventions in the optimization process through data selection. The resultant algorithm, Curvature-Aware Policy Optimization (CAPO), identifies samples that contribute to unstable updates and masks them out. Theoretically, we establish monotonic improvement guarantees under realistic assumptions. On standard math reasoning benchmarks, we empirically show that CAPO ensures stable updates under aggressive learning regimes where baselines catastrophically fail. With minimal intervention (rejecting fewer than 8% of tokens), CAPO achieves up to 30x improvement in sample efficiency over standard GRPO for LLM reasoning.

  • 3 authors
·
Oct 1, 2025

On the Stability of Expressive Positional Encodings for Graph Neural Networks

Designing effective positional encodings for graphs is key to building powerful graph transformers and enhancing message-passing graph neural networks. Although widespread, using Laplacian eigenvectors as positional encodings faces two fundamental challenges: (1) Non-uniqueness: there are many different eigendecompositions of the same Laplacian, and (2) Instability: small perturbations to the Laplacian could result in completely different eigenspaces, leading to unpredictable changes in positional encoding. Despite many attempts to address non-uniqueness, most methods overlook stability, leading to poor generalization on unseen graph structures. We identify the cause of instability to be a "hard partition" of eigenspaces. Hence, we introduce Stable and Expressive Positional Encodings (SPE), an architecture for processing eigenvectors that uses eigenvalues to "softly partition" eigenspaces. SPE is the first architecture that is (1) provably stable, and (2) universally expressive for basis invariant functions whilst respecting all symmetries of eigenvectors. Besides guaranteed stability, we prove that SPE is at least as expressive as existing methods, and highly capable of counting graph structures. Finally, we evaluate the effectiveness of our method on molecular property prediction, and out-of-distribution generalization tasks, finding improved generalization compared to existing positional encoding methods.

  • 7 authors
·
Oct 4, 2023