rahul7star commited on
Commit
a2241cd
·
verified ·
1 Parent(s): b37a9c6

Add sdxl_lora_elemental_tune.py from 2vXpSwA7/iroiro-lora

Browse files
Files changed (1) hide show
  1. sdxl_lora_elemental_tune.py +193 -0
sdxl_lora_elemental_tune.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+ from safetensors.torch import load_file, save_file
4
+ import toml
5
+ import re
6
+ from safetensors import safe_open
7
+ import math
8
+
9
+ def parse_key(key):
10
+ match = re.match(r"lora_unet_(input|output|up|down)_blocks_(\d+(?:_\d+)?)_(.+)\.(?:alpha|lora_(?:down|up)\.weight)", key)
11
+ if match:
12
+ return "unet", match.group(1) + "_blocks", match.group(2), match.group(3)
13
+
14
+ match = re.match(r"lora_unet_(mid_block)_(resnets|attentions)_(\d+)_(.+)\.(?:alpha|lora_(?:down|up)\.weight)", key)
15
+ if match:
16
+ return "unet", match.group(1), f"{match.group(2)}_{match.group(3)}", match.group(4)
17
+
18
+ match = re.match(r"lora_unet_(middle_block)_(\d+)_(.+)\.(?:alpha|lora_(?:down|up)\.weight)", key)
19
+ if match:
20
+ return "unet", match.group(1), match.group(2), match.group(3)
21
+
22
+ match = re.match(r"lora_te\d+_text_model_encoder_(.+)\.(?:alpha|lora_(?:down|up)\.weight)", key)
23
+ if match:
24
+ return "text_encoder", "encoder_layers", match.group(1).split("_")[0], "_".join(match.group(1).split("_")[1:])
25
+
26
+ return None, None, None, None
27
+
28
+ def extract_lora_hierarchy(lora_tensors, mode="extract"):
29
+ lora_hierarchy = {}
30
+ lora_key_groups = {"unet": {}, "text_encoder": {}} if mode == "adjust" else None
31
+
32
+ for key in lora_tensors:
33
+ if key.startswith("lora_unet_"):
34
+ model_type, block_type, block_num, layer_key = parse_key(key)
35
+
36
+ if model_type and block_type and layer_key:
37
+ parts = layer_key.split("_")
38
+ if "transformer_blocks" in layer_key:
39
+ grouped_key = "_".join(parts[:3] + [parts[3] if len(parts) > 5 else ""])
40
+ elif "attentions" in layer_key:
41
+ grouped_key = "_".join(parts[:3] + [parts[3] if len(parts) > 5 else ""])
42
+ elif "resnets" in layer_key:
43
+ grouped_key = "_".join(parts[:3])
44
+ else:
45
+ grouped_key = layer_key
46
+
47
+ if model_type not in lora_hierarchy:
48
+ lora_hierarchy[model_type] = {}
49
+ if block_type not in lora_hierarchy[model_type]:
50
+ lora_hierarchy[model_type][block_type] = {}
51
+ if block_num not in lora_hierarchy[model_type][block_type]:
52
+ lora_hierarchy[model_type][block_type][block_num] = {}
53
+ lora_hierarchy[model_type][block_type][block_num][grouped_key] = 1.0
54
+
55
+ if mode == "adjust":
56
+ group_key = f"..unet_{block_type}_{block_num}_{grouped_key}"
57
+ if group_key not in lora_key_groups["unet"]:
58
+ lora_key_groups["unet"][group_key] = []
59
+ lora_key_groups["unet"][group_key].append(key)
60
+
61
+ elif key.startswith("lora_te"):
62
+ match = re.match(r"(lora_te\d+)_text_model_encoder_layers_(\d+)_(.+)\.(?:alpha|lora_(?:down|up)\.weight)", key)
63
+ if match:
64
+ model_section = match.group(1)
65
+ block_type = "encoder"
66
+ block_num = match.group(2)
67
+ layer_key = match.group(3)
68
+
69
+ grouped_key = f"layers_{block_num}__{layer_key}"
70
+
71
+ if model_section not in lora_hierarchy:
72
+ lora_hierarchy[model_section] = {}
73
+ if block_type not in lora_hierarchy[model_section]:
74
+ lora_hierarchy[model_section][block_type] = {}
75
+ lora_hierarchy[model_section][block_type][grouped_key] = 1.0
76
+
77
+ if mode == "adjust":
78
+ group_key = f"..{model_section}_{block_num}_{layer_key}"
79
+ lora_key_groups["text_encoder"][group_key] = [key]
80
+
81
+ return lora_hierarchy if mode == "extract" else lora_key_groups
82
+
83
+
84
+ def adjust_lora_weights(lora_path, toml_path, output_path, multiplier=1.0, remove_zero_weight_keys=True):
85
+ try:
86
+ lora_tensors = load_file(lora_path)
87
+ with safe_open(lora_path, framework="pt") as f:
88
+ metadata = f.metadata()
89
+ except Exception as e:
90
+ raise Exception(f"Error loading LoRA model: {e}")
91
+
92
+ try:
93
+ with open(toml_path, "r") as f:
94
+ lora_config = toml.load(f)
95
+ except Exception as e:
96
+ raise Exception(f"Error loading TOML file: {e}")
97
+
98
+
99
+ lora_key_groups = extract_lora_hierarchy(lora_tensors, mode="adjust")
100
+ adjusted_tensors = {}
101
+
102
+ for model_section, model_config in lora_config.items():
103
+ if model_section.startswith("lora_te"):
104
+ for block_type, layers in model_config.items():
105
+ for layer_key, weight in layers.items():
106
+ block_num, layer_name = layer_key.replace("layers_", "").split("__")
107
+ group_key = f"..{model_section}_{block_num}_{layer_name}"
108
+ if group_key in lora_key_groups["text_encoder"]:
109
+ final_weight = weight * multiplier
110
+ if not remove_zero_weight_keys or final_weight != 0.0:
111
+ for target_key in lora_key_groups["text_encoder"][group_key]:
112
+ if target_key.endswith(".alpha"):
113
+ final_weight = weight * multiplier
114
+ if not remove_zero_weight_keys or final_weight != 0.0:
115
+ adjusted_tensors[target_key] = lora_tensors[target_key]
116
+ else:
117
+ final_weight = weight * multiplier
118
+ if not remove_zero_weight_keys or final_weight != 0.0:
119
+ adjusted_tensors[target_key] = lora_tensors[target_key] * math.sqrt(final_weight)
120
+
121
+ else: # unet
122
+ for block_type, block_nums in model_config.items():
123
+ for block_num, layer_keys in block_nums.items():
124
+ for grouped_key, weight in layer_keys.items():
125
+ group_key = f"..unet_{block_type}_{block_num}_{grouped_key}"
126
+ if group_key in lora_key_groups["unet"]:
127
+ final_weight = weight * multiplier
128
+ if not remove_zero_weight_keys or final_weight != 0.0:
129
+ for target_key in lora_key_groups["unet"][group_key]:
130
+ if target_key.endswith(".alpha"):
131
+ final_weight = weight * multiplier
132
+ if not remove_zero_weight_keys or final_weight != 0.0:
133
+ adjusted_tensors[target_key] = lora_tensors[target_key]
134
+ else:
135
+ final_weight = weight * multiplier
136
+ if not remove_zero_weight_keys or final_weight != 0.0:
137
+ adjusted_tensors[target_key] = lora_tensors[target_key] * math.sqrt(final_weight)
138
+
139
+
140
+
141
+ try:
142
+ save_file(adjusted_tensors, output_path, metadata)
143
+ except Exception as e:
144
+ raise Exception(f"Error saving adjusted model: {e}")
145
+
146
+
147
+ def write_toml(lora_hierarchy, output_path):
148
+ try:
149
+ with open(output_path, "w") as f:
150
+ toml.dump(lora_hierarchy, f)
151
+ except Exception as e:
152
+ raise Exception(f"Error writing TOML file: {e}")
153
+
154
+
155
+ def main():
156
+ parser = argparse.ArgumentParser(description="Extract or adjust LoRA weights based on a TOML config.")
157
+ subparsers = parser.add_subparsers(dest="mode", help="Choose mode: 'extract' or 'adjust'")
158
+
159
+ # Extract mode
160
+ parser_extract = subparsers.add_parser("extract", help="Extract LoRA hierarchy to a TOML file")
161
+ parser_extract.add_argument("--lora_path", required=True, help="Path to the LoRA safetensors file")
162
+ parser_extract.add_argument("--output_path", required=True, help="Path to the output TOML file")
163
+
164
+ # Adjust mode
165
+ parser_adjust = subparsers.add_parser("adjust", help="Adjust LoRA weights based on a TOML config.")
166
+ parser_adjust.add_argument("--lora_path", required=True, help="Path to the LoRA safetensors file")
167
+ parser_adjust.add_argument("--toml_path", required=True, help="Path to the TOML config file")
168
+ parser_adjust.add_argument("--output_path", required=True, help="Path to the output safetensors file")
169
+ parser_adjust.add_argument("--multiplier", type=float, default=1.0, help="Global multiplier for the LoRA weights")
170
+ parser_adjust.add_argument("--remove_zero_weight_keys", action="store_true",
171
+ help="Remove keys with resulting weight of 0. Useful for reducing file size.")
172
+
173
+ args = parser.parse_args()
174
+
175
+ try:
176
+ if args.mode == "extract":
177
+ lora_tensors = load_file(args.lora_path)
178
+ lora_hierarchy = extract_lora_hierarchy(lora_tensors)
179
+ write_toml(lora_hierarchy, args.output_path)
180
+ print(f"Successfully extracted LoRA hierarchy to {args.output_path}")
181
+
182
+ elif args.mode == "adjust":
183
+ adjust_lora_weights(args.lora_path, args.toml_path, args.output_path, args.multiplier, args.remove_zero_weight_keys)
184
+ print(f"Successfully adjusted LoRA weights and saved to {args.output_path}")
185
+
186
+ else:
187
+ parser.print_help()
188
+
189
+ except Exception as e:
190
+ print(f"An error occurred: {e}")
191
+
192
+ if __name__ == "__main__":
193
+ main()