Spaces:
Runtime error
Runtime error
more debugging for CUDA being initialized outside of hugging space domain
Browse files
app.py
CHANGED
|
@@ -22,7 +22,7 @@ subprocess.run(["bash", "get_pretrained_models.sh"])
|
|
| 22 |
|
| 23 |
@spaces.GPU(duration=30)
|
| 24 |
def load_model_and_predict(image_path):
|
| 25 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 26 |
model, transform = depth_pro.create_model_and_transforms()
|
| 27 |
model = model.to(device)
|
| 28 |
model.eval()
|
|
@@ -219,6 +219,7 @@ def predict_depth(input_image):
|
|
| 219 |
print(f"Resized image path: {temp_file}")
|
| 220 |
|
| 221 |
depth, focallength_px = load_model_and_predict(temp_file)
|
|
|
|
| 222 |
|
| 223 |
if depth.ndim != 2:
|
| 224 |
depth = depth.squeeze()
|
|
@@ -236,9 +237,14 @@ def predict_depth(input_image):
|
|
| 236 |
plt.close()
|
| 237 |
|
| 238 |
raw_depth_path = "raw_depth_map.csv"
|
| 239 |
-
np.savetxt(raw_depth_path, depth, delimiter=',')
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
|
| 241 |
print("Depth map created!")
|
|
|
|
| 242 |
return output_path, f"Focal length: {focallength_px:.2f} pixels", raw_depth_path, temp_file, focallength_px
|
| 243 |
except Exception as e:
|
| 244 |
import traceback
|
|
@@ -248,6 +254,7 @@ def predict_depth(input_image):
|
|
| 248 |
finally:
|
| 249 |
if temp_file and os.path.exists(temp_file):
|
| 250 |
os.remove(temp_file)
|
|
|
|
| 251 |
|
| 252 |
@spaces.GPU(duration=30)
|
| 253 |
def create_3d_model(depth_csv, image_path, focallength_px, simplification_factor, smoothing_iterations, thin_threshold):
|
|
|
|
| 22 |
|
| 23 |
@spaces.GPU(duration=30)
|
| 24 |
def load_model_and_predict(image_path):
|
| 25 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 26 |
model, transform = depth_pro.create_model_and_transforms()
|
| 27 |
model = model.to(device)
|
| 28 |
model.eval()
|
|
|
|
| 219 |
print(f"Resized image path: {temp_file}")
|
| 220 |
|
| 221 |
depth, focallength_px = load_model_and_predict(temp_file)
|
| 222 |
+
print(f"Raw depth type: {type(depth)}, focallength_px type: {type(focallength_px)}")
|
| 223 |
|
| 224 |
if depth.ndim != 2:
|
| 225 |
depth = depth.squeeze()
|
|
|
|
| 237 |
plt.close()
|
| 238 |
|
| 239 |
raw_depth_path = "raw_depth_map.csv"
|
| 240 |
+
np.savetxt(raw_depth_path, depth.cpu().numpy() if isinstance(depth, torch.Tensor) else depth, delimiter=',')
|
| 241 |
+
print(f"Saved raw depth map to {raw_depth_path}")
|
| 242 |
+
|
| 243 |
+
focallength_px = float(focallength_px)
|
| 244 |
+
print(f"Converted focallength_px to float: {focallength_px}")
|
| 245 |
|
| 246 |
print("Depth map created!")
|
| 247 |
+
print(f"Returning - output_path: {output_path}, focallength_px: {focallength_px}, raw_depth_path: {raw_depth_path}, temp_file: {temp_file}")
|
| 248 |
return output_path, f"Focal length: {focallength_px:.2f} pixels", raw_depth_path, temp_file, focallength_px
|
| 249 |
except Exception as e:
|
| 250 |
import traceback
|
|
|
|
| 254 |
finally:
|
| 255 |
if temp_file and os.path.exists(temp_file):
|
| 256 |
os.remove(temp_file)
|
| 257 |
+
print(f"Removed temporary file: {temp_file}")
|
| 258 |
|
| 259 |
@spaces.GPU(duration=30)
|
| 260 |
def create_3d_model(depth_csv, image_path, focallength_px, simplification_factor, smoothing_iterations, thin_threshold):
|