Spaces:
Sleeping
Sleeping
File size: 17,436 Bytes
7dfe46c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
#!/usr/bin/env python3
"""
Direct Document Loading Script for RAG Pipeline
This script loads documents directly from a data directory into the RAG system
and provides an interactive question-answering interface.
"""
import os
import sys
import logging
from pathlib import Path
from typing import List, Dict, Any, Optional
import time
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Add src to path
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
try:
from src.config import Config
from src.ingestion_pipeline import DocumentIngestionPipeline, IngestionResult
from src.rag_engine import RAGEngine, RAGResponse
from src.metadata_manager import MetadataManager
from src.vector_store import QdrantVectorStore, QdrantClient
from src.embedding_system import EmbeddingSystem, RerankResult
from logger.custom_logger import CustomLoggerTracker
from src.document_processor import ProcessingStatus, DocumentProcessorFactory, DocumentType
from src.pdf_processor import PDFProcessor
from src.excel_processor import ExcelProcessor
from src.image_processor import ImageProcessor
# Initialize logger
custom_log = CustomLoggerTracker()
logger = custom_log.get_logger("direct_rag_loader")
except ImportError as e:
print(f"Failed to import RAG components: {e}")
print("Please ensure all src/ modules are available and properly structured.")
sys.exit(1)
class DirectRAGLoader:
"""
Direct document loader for RAG system.
Loads documents from a specified directory and enables question answering.
"""
def __init__(self, data_directory: str = "data", config_path: str = "src/config.yaml"):
"""
Initialize the RAG loader.
Args:
data_directory: Directory containing documents to load
config_path: Path to configuration file
"""
self.data_directory = Path(data_directory)
self.config_path = config_path
# RAG components
self.config = None
self.ingestion_pipeline = None
self.rag_engine = None
self.metadata_manager = None
# Document tracking
self.loaded_documents = []
self.processing_results = []
logger.info(f"DirectRAGLoader initialized for directory: {self.data_directory}")
def initialize_system(self) -> bool:
"""
Initialize the RAG system components.
Returns:
True if successful, False otherwise
"""
try:
logger.info("Initializing RAG system...")
# Check if config file exists
if not Path(self.config_path).exists():
logger.error(f"Configuration file not found: {self.config_path}")
return False
# Load configuration
self.config = Config(self.config_path)
logger.info("Configuration loaded successfully")
# Initialize components with config
config_dict = {
'siliconflow_api_key': self.config.siliconflow_api_key,
'groq_api_key': self.config.groq_api_key,
'qdrant_url': self.config.qdrant_url,
'qdrant_api_key': self.config.qdrant_api_key,
**self.config.rag_config,
**self.config.document_processing_config,
**self.config.storage_config
}
# Initialize core components
self.ingestion_pipeline = DocumentIngestionPipeline(config_dict)
self.rag_engine = RAGEngine(config_dict)
self.metadata_manager = MetadataManager(config_dict)
# Register document processors
DocumentProcessorFactory.register_processor(DocumentType.PDF, PDFProcessor)
DocumentProcessorFactory.register_processor(DocumentType.EXCEL, ExcelProcessor)
DocumentProcessorFactory.register_processor(DocumentType.IMAGE, ImageProcessor)
logger.info("RAG system initialized successfully")
return True
except Exception as e:
logger.error(f"Failed to initialize RAG system: {e}")
def discover_documents(self) -> List[Path]:
if not self.data_directory.exists():
logger.error(f"Data directory does not exist: {self.data_directory}")
return []
# Supported file extensions
supported_extensions = ['.pdf', '.xlsx', '.xls', '.xlsm', '.png', '.jpg', '.jpeg', '.csv', '.txt']
documents = []
for ext in supported_extensions:
documents.extend(self.data_directory.glob(f"*{ext}"))
documents.extend(self.data_directory.glob(f"**/*{ext}")) # Recursive search
# Remove duplicates and sort
documents = sorted(list(set(documents)))
logger.info(f"Found {len(documents)} documents in {self.data_directory}")
for doc in documents:
logger.info(f" - {doc.name} ({doc.suffix})")
return documents
def load_documents(self, document_paths: Optional[List[Path]] = None) -> bool:
"""
Load documents into the RAG system.
Args:
document_paths: Optional list of specific documents to load.
If None, loads all discovered documents.
Returns:
True if at least one document was loaded successfully
"""
if not self.ingestion_pipeline:
logger.error("RAG system not initialized. Call initialize_system() first.")
return False
# Discover documents if not provided
if document_paths is None:
document_paths = self.discover_documents()
if not document_paths:
logger.warning("No documents found to load")
return False
logger.info(f"Starting batch ingestion of {len(document_paths)} documents...")
# Convert Path objects to strings
file_paths = [str(path) for path in document_paths]
# Process documents in batch
start_time = time.time()
batch_stats = self.ingestion_pipeline.ingest_batch(file_paths, max_workers=2)
# Store results
self.processing_results = batch_stats
# Log results
logger.info("=" * 60)
logger.info("BATCH PROCESSING RESULTS")
logger.info("=" * 60)
logger.info(f"Total documents: {batch_stats.total_documents}")
logger.info(f"Successful: {batch_stats.successful_documents}")
logger.info(f"Failed: {batch_stats.failed_documents}")
logger.info(f"Total chunks created: {batch_stats.total_chunks}")
logger.info(f"Processing time: {batch_stats.total_processing_time:.2f}s")
logger.info(f"Average time per document: {batch_stats.average_processing_time:.2f}s")
if batch_stats.documents_by_type:
logger.info("Documents by type:")
for doc_type, count in batch_stats.documents_by_type.items():
logger.info(f" {doc_type}: {count}")
if batch_stats.errors:
logger.warning("Errors encountered:")
for error in batch_stats.errors:
logger.warning(f" - {error}")
logger.info("=" * 60)
return batch_stats.successful_documents > 0
def ask_question(self, question: str, max_results: int = 5,
show_citations: bool = True) -> Optional[RAGResponse]:
"""
Ask a question to the RAG system.
Args:
question: Question to ask
max_results: Maximum number of context chunks to use
show_citations: Whether to display citations
Returns:
RAGResponse object or None if failed
"""
if not self.rag_engine:
logger.error("RAG system not initialized. Call initialize_system() first.")
return None
try:
logger.info(f"Processing question: {question}")
# Temporarily adjust RAG engine parameters
original_top_k = self.rag_engine.final_top_k
self.rag_engine.final_top_k = max_results
# Get response
response = self.rag_engine.answer_question(question)
# Restore original parameter
self.rag_engine.final_top_k = original_top_k
# Display response
self._display_response(response, show_citations)
return response
except Exception as e:
logger.error(f"Failed to process question: {e}")
return None
def _display_response(self, response: RAGResponse, show_citations: bool = True):
"""Display RAG response in a formatted way."""
print("\n" + "="*60)
print("π€ RAG SYSTEM RESPONSE")
print("="*60)
if not response.success:
print(f"β Error: {response.error_message}")
return
# Main answer
print(f"π Answer:")
print(f"{response.answer}")
print()
# Metrics
print(f"π Metrics:")
print(f" β’ Confidence Score: {response.confidence_score:.3f}")
print(f" β’ Processing Time: {response.processing_time:.3f}s")
print(f" β’ Sources Used: {len(response.citations)}")
print(f" β’ Chunks Retrieved: {response.total_chunks_retrieved}")
print(f" β’ Model Used: {response.model_used}")
print()
# Performance breakdown
print(f"β‘ Performance Breakdown:")
print(f" β’ Retrieval: {response.retrieval_time:.3f}s")
print(f" β’ Reranking: {response.rerank_time:.3f}s")
print(f" β’ Generation: {response.generation_time:.3f}s")
print()
# Citations
if show_citations and response.citations:
print(f"π Sources & Citations:")
for i, citation in enumerate(response.citations, 1):
print(f" [{i}] {citation.source_file}")
# Location details
location_parts = []
if citation.page_number:
location_parts.append(f"Page {citation.page_number}")
if citation.worksheet_name:
location_parts.append(f"Sheet: {citation.worksheet_name}")
if citation.cell_range:
location_parts.append(f"Range: {citation.cell_range}")
if citation.section_title:
location_parts.append(f"Section: {citation.section_title}")
if location_parts:
print(f" π {' | '.join(location_parts)}")
print(f" π Confidence: {citation.confidence:.3f}")
print(f" π Snippet: {citation.text_snippet[:100]}...")
print()
print("="*60)
def interactive_qa_session(self):
"""Start an interactive question-answering session."""
print("\n" + "="*60)
print("π€ INTERACTIVE Q&A SESSION")
print("="*60)
print("Enter your questions below. Type 'quit', 'exit', or 'q' to stop.")
print("Type 'status' to see system status.")
print("Type 'docs' to see loaded documents.")
print("="*60)
while True:
try:
# Get user input
question = input("\nβ Your question: ").strip()
if not question:
continue
# Check for special commands
if question.lower() in ['quit', 'exit', 'q']:
print("π Goodbye!")
break
elif question.lower() == 'status':
self._show_system_status()
continue
elif question.lower() == 'docs':
self._show_loaded_documents()
continue
# Process question
print("π Processing your question...")
response = self.ask_question(question, max_results=5, show_citations=True)
if not response:
print("β Failed to get response. Please try again.")
except KeyboardInterrupt:
print("\n\nπ Session interrupted. Goodbye!")
break
except Exception as e:
print(f"β Error: {e}")
continue
def _show_system_status(self):
"""Display system status information."""
print("\n" + "="*50)
print("βοΈ SYSTEM STATUS")
print("="*50)
try:
# RAG engine health check
if self.rag_engine:
health = self.rag_engine.health_check()
for component, status in health.items():
status_icon = "β
" if status else "β"
print(f" {component.replace('_', ' ').title()}: {status_icon}")
# Document statistics
if self.metadata_manager:
stats = self.metadata_manager.get_statistics()
print(f"\nπ Document Statistics:")
print(f" Total Documents: {stats.get('total_documents', 0)}")
print(f" Total Chunks: {stats.get('total_chunks', 0)}")
print(f" Total File Size: {self._format_file_size(stats.get('total_file_size', 0))}")
# Documents by status
status_counts = stats.get('documents_by_status', {})
if status_counts:
print(f" By Status:")
for status, count in status_counts.items():
print(f" {status}: {count}")
except Exception as e:
print(f"β Error getting system status: {e}")
print("="*50)
def _show_loaded_documents(self):
"""Display loaded documents information."""
print("\n" + "="*50)
print("π LOADED DOCUMENTS")
print("="*50)
try:
if self.metadata_manager:
documents = self.metadata_manager.list_documents(limit=50)
if not documents:
print("No documents loaded yet.")
return
for doc in documents:
status_icon = "β
" if doc.processing_status == ProcessingStatus.COMPLETED else "β"
print(f" {status_icon} {doc.filename}")
print(f" Type: {doc.file_type.upper()}")
print(f" Chunks: {doc.total_chunks}")
print(f" Size: {self._format_file_size(doc.file_size)}")
print(f" Status: {doc.processing_status.value}")
if doc.error_message:
print(f" Error: {doc.error_message}")
print()
except Exception as e:
print(f"β Error getting document list: {e}")
print("="*50)
def _format_file_size(self, size_bytes: int) -> str:
"""Format file size in human readable format."""
if size_bytes == 0:
return "0B"
size_names = ["B", "KB", "MB", "GB", "TB"]
i = 0
while size_bytes >= 1024 and i < len(size_names) - 1:
size_bytes /= 1024.0
i += 1
return f"{size_bytes:.1f}{size_names[i]}"
def main():
"""Main function to run the direct RAG loader."""
print("π Manufacturing RAG Agent - Direct Document Loader")
print("="*60)
# Configuration
data_directory = "data/documents/" # Change this to your documents directory
config_path = "src/config.yaml" # Change this to your config file path
# Initialize loader
loader = DirectRAGLoader(data_directory=data_directory, config_path=config_path)
try:
# Step 1: Initialize system
print("π§ Initializing RAG system...")
if not loader.initialize_system():
print("β Failed to initialize RAG system. Please check your configuration and API keys.")
return
print("β
RAG system initialized successfully!")
# Step 2: Load documents
print("π Loading documents...")
if not loader.load_documents():
print("β Failed to load documents. Please check your data directory and file formats.")
return
print("β
Documents loaded successfully!")
# Step 3: Start interactive session
loader.interactive_qa_session()
except Exception as e:
logger.error(f"Application error: {e}")
print(f"β Application error: {e}")
except KeyboardInterrupt:
print("\nπ Application interrupted. Goodbye!")
if __name__ == "__main__":
main() |