Spaces:
Sleeping
Sleeping
File size: 26,938 Bytes
7dfe46c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 |
import gradio as gr
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from pathlib import Path
import tempfile
import time
import json
import logging
import os
import sys
from typing import Dict, Any, Tuple
from datetime import datetime
from dotenv import load_dotenv
load_dotenv()
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
try:
from src.config import Config
from src.ingestion_pipeline import DocumentIngestionPipeline, IngestionResult
from src.rag_engine import RAGEngine, RAGResponse
from src.metadata_manager import MetadataManager
from src.document_processor import ProcessingStatus
from src.embedding_system import EmbeddingSystem
from src.vector_store import QdrantVectorStore
from src.groq_client import LLMSystem
from logger.custom_logger import CustomLoggerTracker
custom_log = CustomLoggerTracker()
logger = custom_log.get_logger("gradio_demo")
except ImportError:
# Fallback to standard logging if custom logger not available
logger = logging.getLogger("gradio_demo")
class RAGGradioDemo:
"""
Gradio demo application for the Manufacturing RAG Agent.
This demo provides a user-friendly interface for document upload,
question answering, and result visualization using Gradio.
"""
def __init__(self):
"""Initialize the RAG demo application."""
self.config = None
self.ingestion_pipeline = None
self.rag_engine = None
self.metadata_manager = None
self.embedding_system = None
self.vector_store = None
self.llm_system = None
# Demo state
self.chat_history = []
self.documents = []
self.system_initialized = False
def initialize_system(self) -> Tuple[bool, str]:
"""
Initialize the RAG system components.
Returns:
Tuple of (success, message)
"""
current_dir = os.path.dirname(os.path.abspath(__file__))
src_dir = os.path.dirname(current_dir)
try:
# Check if required modules are imported
if Config is None:
return False, "RAG modules not imported. Please ensure all src/ modules are available and properly structured."
# Check for config file in multiple locations
config_paths = [
"config.yaml",
"src/config.yaml",
os.path.join(current_dir, "config.yaml"),
os.path.join(src_dir, "config.yaml")
]
config_path = None
for path in config_paths:
if os.path.exists(path):
config_path = path
break
if not config_path:
available_files = []
for search_dir in [current_dir, src_dir]:
if os.path.exists(search_dir):
files = [f for f in os.listdir(search_dir) if f.endswith('.yaml') or f.endswith('.yml')]
if files:
available_files.extend([os.path.join(search_dir, f) for f in files])
error_msg = f"Configuration file not found. Searched: {config_paths}"
if available_files:
error_msg += f"\nAvailable config files: {available_files}"
return False, error_msg
logger.info(f"Using config file: {config_path}")
# Load configuration
self.config = Config(config_path)
# Initialize components
config_dict = {
'siliconflow_api_key': self.config.siliconflow_api_key,
'groq_api_key': self.config.groq_api_key,
'qdrant_url': self.config.qdrant_url,
'qdrant_api_key': self.config.qdrant_api_key,
**self.config.rag_config,
**self.config.document_processing_config,
**self.config.storage_config
}
# Initialize core components
self.embedding_system = EmbeddingSystem(config_dict)
self.vector_store = QdrantVectorStore(config_dict)
self.llm_system = LLMSystem(config_dict)
self.ingestion_pipeline = DocumentIngestionPipeline(config_dict)
self.rag_engine = RAGEngine(config_dict)
self.metadata_manager = MetadataManager(config_dict)
self.system_initialized = True
return True, "RAG system initialized successfully!"
except Exception as e:
error_msg = f"Failed to initialize RAG system: {str(e)}"
logger.error(error_msg)
logger.error(f"Error details: {type(e).__name__}")
return False, error_msg
def process_uploaded_files(self, files) -> Tuple[str, pd.DataFrame]:
"""
Process uploaded files through the ingestion pipeline.
Args:
files: List of uploaded file objects
Returns:
Tuple of (status_message, results_dataframe)
"""
if not self.system_initialized:
return "β System not initialized. Please initialize first.", pd.DataFrame()
if not files:
return "No files uploaded.", pd.DataFrame()
results = []
total_files = len(files)
try:
for i, file in enumerate(files):
# Save uploaded file temporarily
temp_path = None
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=Path(file.name).suffix) as tmp_file:
tmp_file.write(file.read())
temp_path = tmp_file.name
# Process document
result = self.ingestion_pipeline.ingest_document(temp_path)
# Add result info
results.append({
'Filename': file.name,
'Status': 'β
Success' if result.success else 'β Failed',
'Chunks Created': result.chunks_created,
'Chunks Indexed': result.chunks_indexed,
'Processing Time (s)': f"{result.processing_time:.2f}",
'Error Message': result.error_message or 'None'
})
except Exception as e:
results.append({
'Filename': file.name,
'Status': 'β Failed',
'Chunks Created': 0,
'Chunks Indexed': 0,
'Processing Time (s)': '0.00',
'Error Message': str(e)
})
finally:
# Clean up temporary file
if temp_path and os.path.exists(temp_path):
os.unlink(temp_path)
# Create results summary
successful = sum(1 for r in results if 'Success' in r['Status'])
total_chunks = sum(r['Chunks Indexed'] for r in results if isinstance(r['Chunks Indexed'], int))
status_msg = f"β
Processing Complete: {successful}/{total_files} files processed successfully. Total chunks indexed: {total_chunks}"
return status_msg, pd.DataFrame(results)
except Exception as e:
error_msg = f"β Batch processing failed: {str(e)}"
logger.error(error_msg)
return error_msg, pd.DataFrame(results) if results else pd.DataFrame()
def ask_question(self, question: str, max_results: int = 5,
similarity_threshold: float = 0.7, document_filter: str = "All") -> Tuple[str, str, pd.DataFrame]:
"""
Process a question through the RAG engine.
Args:
question: Question to answer
max_results: Maximum context chunks
similarity_threshold: Similarity threshold for retrieval
document_filter: Document type filter
Returns:
Tuple of (answer, citations_info, performance_dataframe)
"""
if not self.system_initialized:
return "β System not initialized. Please initialize first.", "", pd.DataFrame()
if not question.strip():
return "Please enter a question.", "", pd.DataFrame()
try:
# Check if documents are available
documents = self.metadata_manager.list_documents(
status=ProcessingStatus.COMPLETED,
limit=1
)
if not documents:
return "β οΈ No processed documents available. Please upload and process documents first.", "", pd.DataFrame()
# Prepare filters
filters = {}
if document_filter != "All":
filters["document_type"] = document_filter.lower()
# Update RAG engine config temporarily
original_config = {
'final_top_k': self.rag_engine.final_top_k,
'similarity_threshold': self.rag_engine.similarity_threshold
}
self.rag_engine.final_top_k = max_results
self.rag_engine.similarity_threshold = similarity_threshold
# Get response
response = self.rag_engine.answer_question(question, filters if filters else None)
# Restore original config
self.rag_engine.final_top_k = original_config['final_top_k']
self.rag_engine.similarity_threshold = original_config['similarity_threshold']
# Add to chat history
self.chat_history.append((question, response))
# Format answer
if not response.success:
return f"β Failed to generate answer: {response.error_message}", "", pd.DataFrame()
# Create citations info
citations_info = self._format_citations(response.citations)
# Create performance dataframe
performance_data = {
'Metric': ['Confidence Score', 'Processing Time (s)', 'Retrieval Time (s)',
'Generation Time (s)', 'Rerank Time (s)', 'Sources Used', 'Chunks Retrieved'],
'Value': [
f"{response.confidence_score:.3f}",
f"{response.processing_time:.3f}",
f"{response.retrieval_time:.3f}",
f"{response.generation_time:.3f}",
f"{response.rerank_time:.3f}",
len(response.citations),
response.total_chunks_retrieved
]
}
performance_df = pd.DataFrame(performance_data)
return response.answer, citations_info, performance_df
except Exception as e:
error_msg = f"β Question processing failed: {str(e)}"
logger.error(error_msg)
return error_msg, "", pd.DataFrame()
def _format_citations(self, citations) -> str:
"""Format citations for display."""
if not citations:
return "No citations available."
citation_text = "## π Sources & Citations\n\n"
for i, citation in enumerate(citations):
citation_text += f"**Source {i+1}:** {citation.source_file} (Confidence: {citation.confidence:.3f})\n"
# Add specific location info
location_parts = []
if citation.page_number:
location_parts.append(f"π Page: {citation.page_number}")
if citation.worksheet_name:
location_parts.append(f"π Sheet: {citation.worksheet_name}")
if citation.cell_range:
location_parts.append(f"π’ Range: {citation.cell_range}")
if citation.section_title:
location_parts.append(f"π Section: {citation.section_title}")
if location_parts:
citation_text += f"*Location:* {' | '.join(location_parts)}\n"
citation_text += f"*Excerpt:* \"{citation.text_snippet}\"\n\n"
return citation_text
def get_document_library(self) -> pd.DataFrame:
"""Get document library as DataFrame."""
if not self.system_initialized:
return pd.DataFrame({'Message': ['System not initialized']})
try:
documents = self.metadata_manager.list_documents(limit=100)
if not documents:
return pd.DataFrame({'Message': ['No documents uploaded yet']})
doc_data = []
for doc in documents:
doc_data.append({
'Filename': doc.filename,
'Type': doc.file_type.upper(),
'Status': doc.processing_status.value.title(),
'Chunks': doc.total_chunks,
'Size': self._format_file_size(doc.file_size),
'Uploaded': doc.upload_timestamp.strftime('%Y-%m-%d %H:%M'),
'Processing Time (s)': f"{doc.processing_time:.2f}" if doc.processing_time else "N/A"
})
return pd.DataFrame(doc_data)
except Exception as e:
logger.error(f"Failed to load document library: {e}")
return pd.DataFrame({'Error': [str(e)]})
def get_system_status(self) -> Tuple[str, pd.DataFrame]:
"""Get system status and health information."""
if not self.system_initialized:
return "β System not initialized", pd.DataFrame()
try:
# Health checks
rag_health = self.rag_engine.health_check()
pipeline_health = self.ingestion_pipeline.health_check()
# Create status message
status_parts = []
for component, healthy in rag_health.items():
status = "β
Healthy" if healthy else "β Unhealthy"
status_parts.append(f"**{component.replace('_', ' ').title()}:** {status}")
status_message = "## π₯ System Health\n" + "\n".join(status_parts)
# Create detailed status table
all_health = {**rag_health, **pipeline_health}
health_data = []
for component, healthy in all_health.items():
health_data.append({
'Component': component.replace('_', ' ').title(),
'Status': 'β
Healthy' if healthy else 'β Unhealthy',
'Last Checked': datetime.now().strftime('%Y-%m-%d %H:%M:%S')
})
return status_message, pd.DataFrame(health_data)
except Exception as e:
error_msg = f"β Failed to check system status: {str(e)}"
logger.error(error_msg)
return error_msg, pd.DataFrame()
def get_analytics_data(self) -> Tuple[str, Dict[str, Any]]:
"""Get analytics data for visualization."""
if not self.system_initialized:
return "β System not initialized", {}
try:
# Get system statistics
pipeline_stats = self.ingestion_pipeline.get_pipeline_stats()
metadata_stats = self.metadata_manager.get_statistics()
# Create summary message
total_docs = metadata_stats.get('total_documents', 0)
total_chunks = metadata_stats.get('total_chunks', 0)
total_size = metadata_stats.get('total_file_size', 0)
summary = f"""## π Analytics Overview
**Total Documents:** {total_docs}
**Total Chunks:** {total_chunks}
**Total File Size:** {self._format_file_size(total_size)}
**Vector Points:** {pipeline_stats.get('vector_store', {}).get('total_points', 0)}
"""
# Prepare data for charts
analytics_data = {
'document_types': metadata_stats.get('documents_by_type', {}),
'processing_status': metadata_stats.get('documents_by_status', {}),
'pipeline_stats': pipeline_stats,
'metadata_stats': metadata_stats
}
return summary, analytics_data
except Exception as e:
error_msg = f"β Failed to load analytics: {str(e)}"
logger.error(error_msg)
return error_msg, {}
def create_document_type_chart(self, analytics_data: Dict[str, Any]):
"""Create document type distribution chart."""
if not analytics_data or 'document_types' not in analytics_data:
return None
type_counts = analytics_data['document_types']
if not type_counts:
return None
fig = px.pie(
values=list(type_counts.values()),
names=list(type_counts.keys()),
title="Documents by Type"
)
return fig
def create_status_chart(self, analytics_data: Dict[str, Any]):
"""Create processing status chart."""
if not analytics_data or 'processing_status' not in analytics_data:
return None
status_counts = analytics_data['processing_status']
if not status_counts:
return None
fig = px.bar(
x=list(status_counts.keys()),
y=list(status_counts.values()),
title="Documents by Processing Status"
)
return fig
def _format_file_size(self, size_bytes: int) -> str:
"""Format file size in human readable format."""
if size_bytes == 0:
return "0B"
size_names = ["B", "KB", "MB", "GB", "TB"]
i = 0
while size_bytes >= 1024 and i < len(size_names) - 1:
size_bytes /= 1024.0
i += 1
return f"{size_bytes:.1f}{size_names[i]}"
def create_gradio_interface():
"""Create the main Gradio interface."""
# Initialize demo instance
demo_instance = RAGGradioDemo()
# Define the interface
with gr.Blocks(title="Manufacturing RAG Agent", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π Manufacturing RAG Agent
*Intelligent document analysis for manufacturing data*
This system allows you to upload manufacturing documents (PDF, Excel, Images) and ask questions about their content.
""")
# System Status
with gr.Row():
with gr.Column(scale=3):
system_status = gr.Markdown("**System Status:** Not initialized")
with gr.Column(scale=1):
init_btn = gr.Button("π Initialize System", variant="primary")
# Main tabs
with gr.Tabs():
# Document Upload Tab
with gr.TabItem("π Document Upload"):
gr.Markdown("### Upload and Process Documents")
with gr.Row():
with gr.Column(scale=2):
file_upload = gr.File(
file_count="multiple",
file_types=[".pdf", ".xlsx", ".xls", ".xlsm", ".png", ".jpg", ".jpeg"],
label="Choose files to upload"
)
upload_btn = gr.Button("π Process Documents", variant="primary")
with gr.Column(scale=1):
upload_status = gr.Textbox(
label="Processing Status",
interactive=False,
lines=3
)
# Results display
upload_results = gr.Dataframe(
label="Processing Results",
interactive=False
)
# Document Library
gr.Markdown("### π Document Library")
refresh_docs_btn = gr.Button("π Refresh Library")
doc_library = gr.Dataframe(
label="Uploaded Documents",
interactive=False
)
# Question Answering Tab
with gr.TabItem("β Ask Questions"):
gr.Markdown("### Ask Questions About Your Documents")
with gr.Row():
with gr.Column(scale=2):
question_input = gr.Textbox(
label="Your Question",
placeholder="e.g., What is the average production yield for Q3?",
lines=2
)
with gr.Row():
ask_btn = gr.Button("π Ask Question", variant="primary")
clear_btn = gr.Button("ποΈ Clear")
with gr.Column(scale=1):
gr.Markdown("#### Advanced Options")
max_results = gr.Slider(
minimum=1, maximum=10, value=5, step=1,
label="Max Context Chunks"
)
similarity_threshold = gr.Slider(
minimum=0.0, maximum=1.0, value=0.7, step=0.1,
label="Similarity Threshold"
)
doc_filter = gr.Dropdown(
choices=["All", "PDF", "Excel", "Image"],
value="All",
label="Filter by Document Type"
)
# Answer display
answer_output = gr.Markdown(label="Answer")
citations_output = gr.Markdown(label="Citations")
# Performance metrics
performance_metrics = gr.Dataframe(
label="Performance Metrics",
interactive=False
)
# Analytics Tab
with gr.TabItem("π Analytics"):
gr.Markdown("### System Analytics")
refresh_analytics_btn = gr.Button("π Refresh Analytics")
analytics_summary = gr.Markdown("Analytics data will appear here...")
with gr.Row():
doc_type_chart = gr.Plot(label="Document Types")
status_chart = gr.Plot(label="Processing Status")
# System Status Tab
with gr.TabItem("βοΈ System Status"):
gr.Markdown("### System Health & Configuration")
check_health_btn = gr.Button("π Check System Health")
health_status = gr.Markdown("System health information will appear here...")
health_details = gr.Dataframe(
label="Component Health Details",
interactive=False
)
# Event handlers
def initialize_system():
success, message = demo_instance.initialize_system()
status_color = "green" if success else "red"
status_icon = "β
" if success else "β"
return f"**System Status:** <span style='color: {status_color}'>{status_icon} {message}</span>"
def refresh_document_library():
return demo_instance.get_document_library()
def refresh_analytics():
summary, data = demo_instance.get_analytics_data()
doc_chart = demo_instance.create_document_type_chart(data)
status_chart_fig = demo_instance.create_status_chart(data)
return summary, doc_chart, status_chart_fig
def check_system_health():
status, details = demo_instance.get_system_status()
return status, details
def clear_question():
return "", "", gr.Dataframe()
# Connect event handlers
init_btn.click(
initialize_system,
outputs=[system_status]
)
upload_btn.click(
demo_instance.process_uploaded_files,
inputs=[file_upload],
outputs=[upload_status, upload_results]
)
refresh_docs_btn.click(
refresh_document_library,
outputs=[doc_library]
)
ask_btn.click(
demo_instance.ask_question,
inputs=[question_input, max_results, similarity_threshold, doc_filter],
outputs=[answer_output, citations_output, performance_metrics]
)
clear_btn.click(
clear_question,
outputs=[question_input, answer_output, performance_metrics]
)
refresh_analytics_btn.click(
refresh_analytics,
outputs=[analytics_summary, doc_type_chart, status_chart]
)
check_health_btn.click(
check_system_health,
outputs=[health_status, health_details]
)
# Auto-refresh document library on upload
upload_btn.click(
refresh_document_library,
outputs=[doc_library]
)
return demo
def main():
"""Main function to launch the Gradio demo."""
try:
# Create and launch the interface
demo = create_gradio_interface()
# Launch with configuration
demo.launch(
server_name="0.0.0.0", # Allow external connections
server_port=7860, # Default Gradio port
share=False, # Set to True to create public link
debug=True, # Enable debug mode
show_error=True, # Show detailed error messages
quiet=False # Enable logging
)
except Exception as e:
print(f"Failed to launch Gradio demo: {e}")
print("Please ensure all dependencies are installed and the src/ directory contains the required modules.")
if __name__ == "__main__":
main() |