import gradio as gr import pandas as pd import plotly.express as px import plotly.graph_objects as go from pathlib import Path import tempfile import time import json import logging import os import sys from typing import Dict, Any, Tuple, List from datetime import datetime from dotenv import load_dotenv load_dotenv() sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) # Setup logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) try: from src.config import Config from src.ingestion_pipeline import DocumentIngestionPipeline, IngestionResult from src.rag_engine import RAGEngine, RAGResponse from src.metadata_manager import MetadataManager from src.document_processor import ProcessingStatus, DocumentProcessorFactory, DocumentType from src.pdf_processor import PDFProcessor from src.excel_processor import ExcelProcessor from src.image_processor import ImageProcessor except ImportError as e: logger.error(f"Failed to import RAG components: {e}") print(f"❌ Import Error: {e}") print("Please ensure all src/ modules are properly structured and dependencies are installed") sys.exit(1) class RAGGradioDemo: """Fixed Gradio demo application for the Manufacturing RAG Agent.""" def __init__(self): """Initialize the RAG demo application.""" self.config = None self.ingestion_pipeline = None self.rag_engine = None self.metadata_manager = None # Initialize session state tracking self.system_initialized = False self.documents = [] self.chat_history = [] def initialize_system(self) -> Tuple[bool, str]: """Initialize the RAG system components with better error handling.""" try: # Find config file config_paths = [ "src/config.yaml", "config.yaml", os.path.join(os.path.dirname(__file__), "config.yaml"), os.path.join(os.path.dirname(os.path.dirname(__file__)), "src", "config.yaml") ] config_path = None for path in config_paths: if os.path.exists(path): config_path = path break if not config_path: return False, f"Configuration file not found. Searched: {config_paths}" logger.info(f"Using config file: {config_path}") # Load configuration self.config = Config(config_path) # Validate API keys required_keys = { 'GROQ_API_KEY': self.config.groq_api_key, 'SILICONFLOW_API_KEY': self.config.siliconflow_api_key, 'QDRANT_URL': self.config.qdrant_url } missing_keys = [k for k, v in required_keys.items() if not v] if missing_keys: return False, f"Missing required environment variables: {', '.join(missing_keys)}" # Create config dictionary using your config structure rag_config = self.config.rag_config config_dict = { # API keys 'siliconflow_api_key': self.config.siliconflow_api_key, 'groq_api_key': self.config.groq_api_key, # Qdrant configuration 'qdrant_url': self.config.qdrant_url, 'qdrant_api_key': self.config.qdrant_api_key, 'qdrant_collection': 'manufacturing_docs', # Model configuration from your config.yaml 'embedding_model': rag_config.get('embedding_model', 'Qwen/Qwen3-Embedding-8B'), 'reranker_model': rag_config.get('reranker_model', 'Qwen/Qwen3-Reranker-8B'), 'llm_model': rag_config.get('llm_model', 'openai/gpt-oss-120b'), # Vector configuration 'vector_size': 1024, # Adjust based on your embedding model # RAG parameters from your config 'max_context_chunks': rag_config.get('max_context_chunks', 5), 'similarity_threshold': rag_config.get('similarity_threshold', 0.7), 'rerank_top_k': rag_config.get('rerank_top_k', 20), 'final_top_k': rag_config.get('final_top_k', 5), # Text processing 'chunk_size': rag_config.get('chunk_size', 512), 'chunk_overlap': rag_config.get('chunk_overlap', 50), 'max_context_length': 4000, # Document processing 'image_processing': True, 'table_extraction': True, 'max_file_size_mb': 100, # Storage 'metadata_db_path': './data/metadata.db', # Performance 'max_retries': 3, 'batch_size': 32, 'enable_caching': True, 'temperature': 0.1, 'max_tokens': 1024 } # Register document processors DocumentProcessorFactory.register_processor(DocumentType.PDF, PDFProcessor) DocumentProcessorFactory.register_processor(DocumentType.EXCEL, ExcelProcessor) DocumentProcessorFactory.register_processor(DocumentType.IMAGE, ImageProcessor) # Initialize components with error handling try: self.metadata_manager = MetadataManager(config_dict) logger.info("✅ Metadata manager initialized") self.ingestion_pipeline = DocumentIngestionPipeline(config_dict) logger.info("✅ Ingestion pipeline initialized") self.rag_engine = RAGEngine(config_dict) logger.info("✅ RAG engine initialized") except Exception as e: return False, f"Failed to initialize components: {str(e)}" self.system_initialized = True return True, "RAG system initialized successfully!" except Exception as e: error_msg = f"Failed to initialize RAG system: {str(e)}" logger.error(error_msg) return False, error_msg def process_uploaded_files(self, files) -> Tuple[str, pd.DataFrame]: """Process uploaded files with improved error handling.""" if not self.system_initialized: return "❌ System not initialized. Please initialize first.", pd.DataFrame() if not files: return "No files uploaded.", pd.DataFrame() results = [] total_files = len(files) try: for i, file in enumerate(files): logger.info(f"Processing file {i+1}/{total_files}: {file.name}") # Save uploaded file temporarily temp_path = None try: # Create temporary file with proper extension suffix = Path(file.name).suffix with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp_file: # Read file content file_content = file.read() tmp_file.write(file_content) temp_path = tmp_file.name logger.info(f"Saved temp file: {temp_path}") # Process document result = self.ingestion_pipeline.ingest_document(temp_path) # Add result info results.append({ 'Filename': file.name, 'Status': '✅ Success' if result.success else '❌ Failed', 'Chunks Created': result.chunks_created, 'Chunks Indexed': result.chunks_indexed, 'Processing Time (s)': f"{result.processing_time:.2f}", 'Error Message': result.error_message or 'None' }) logger.info(f"Processing result: {'Success' if result.success else 'Failed'}") except Exception as e: logger.error(f"Error processing {file.name}: {e}") results.append({ 'Filename': file.name, 'Status': '❌ Failed', 'Chunks Created': 0, 'Chunks Indexed': 0, 'Processing Time (s)': '0.00', 'Error Message': str(e) }) finally: # Clean up temporary file if temp_path and os.path.exists(temp_path): try: os.unlink(temp_path) logger.info(f"Cleaned up temp file: {temp_path}") except Exception as e: logger.warning(f"Failed to clean up temp file: {e}") # Create results summary successful = sum(1 for r in results if 'Success' in r['Status']) total_chunks = sum(r['Chunks Indexed'] for r in results if isinstance(r['Chunks Indexed'], int)) status_msg = f"✅ Processing Complete: {successful}/{total_files} files processed successfully. Total chunks indexed: {total_chunks}" return status_msg, pd.DataFrame(results) except Exception as e: error_msg = f"❌ Batch processing failed: {str(e)}" logger.error(error_msg) return error_msg, pd.DataFrame(results) if results else pd.DataFrame() def ask_question(self, question: str, max_results: int = 5, similarity_threshold: float = 0.7) -> Tuple[str, str, pd.DataFrame]: """Process a question through the RAG engine with better error handling.""" if not self.system_initialized: return "❌ System not initialized. Please initialize first.", "", pd.DataFrame() if not question.strip(): return "Please enter a question.", "", pd.DataFrame() try: try: documents = self.metadata_manager.list_documents( status=ProcessingStatus.COMPLETED, limit=1 ) if not documents: return "⚠️ No processed documents available. Please upload and process documents first.", "", pd.DataFrame() except Exception as e: logger.error(f"Failed to check documents: {e}") return "❌ Error checking document availability.", "", pd.DataFrame() # Update RAG engine config temporarily for this query original_final_top_k = self.rag_engine.final_top_k original_similarity_threshold = self.rag_engine.similarity_threshold self.rag_engine.final_top_k = max_results self.rag_engine.similarity_threshold = similarity_threshold # Get response logger.info(f"Asking question: {question[:50]}...") response = self.rag_engine.answer_question(question) # Restore original config self.rag_engine.final_top_k = original_final_top_k self.rag_engine.similarity_threshold = original_similarity_threshold # Add to chat history self.chat_history.append((question, response)) # Format answer if not response.success: return f"❌ Failed to generate answer: {response.error_message}", "", pd.DataFrame() # Create citations info citations_info = self._format_citations(response.citations) # Create performance dataframe performance_data = { 'Metric': ['Confidence Score', 'Processing Time (s)', 'Retrieval Time (s)', 'Generation Time (s)', 'Rerank Time (s)', 'Sources Used', 'Chunks Retrieved'], 'Value': [ f"{response.confidence_score:.3f}", f"{response.processing_time:.3f}", f"{response.retrieval_time:.3f}", f"{response.generation_time:.3f}", f"{response.rerank_time:.3f}", len(response.citations), response.total_chunks_retrieved ] } performance_df = pd.DataFrame(performance_data) return response.answer, citations_info, performance_df except Exception as e: error_msg = f"❌ Question processing failed: {str(e)}" logger.error(error_msg) return error_msg, "", pd.DataFrame() def _format_citations(self, citations) -> str: """Format citations for display.""" if not citations: return "No citations available." citation_text = "## 📚 Sources & Citations\n\n" for i, citation in enumerate(citations): citation_text += f"**Source {i+1}:** {citation.source_file} (Confidence: {citation.confidence:.3f})\n" # Add specific location info location_parts = [] if citation.page_number: location_parts.append(f"📄 Page: {citation.page_number}") if citation.worksheet_name: location_parts.append(f"📊 Sheet: {citation.worksheet_name}") if citation.cell_range: location_parts.append(f"🔢 Range: {citation.cell_range}") if citation.section_title: location_parts.append(f"📑 Section: {citation.section_title}") if location_parts: citation_text += f"*Location:* {' | '.join(location_parts)}\n" citation_text += f"*Excerpt:* \"{citation.text_snippet}\"\n\n" return citation_text def get_document_library(self): if not self.system_initialized: return pd.DataFrame({'Message': ['System not initialized']}) try: documents = self.metadata_manager.list_documents(limit=50) if not documents: return pd.DataFrame({'Message': ['No documents processed yet']}) doc_data = [] for doc in documents: doc_data.append({ 'Filename': doc.filename, 'Type': doc.file_type.upper(), 'Status': doc.processing_status.value.title(), 'Chunks': doc.total_chunks, 'Size': self._format_size(doc.file_size), 'Uploaded': doc.upload_timestamp.strftime('%Y-%m-%d %H:%M') }) return pd.DataFrame(doc_data) except Exception as e: logger.error(f"Failed to get document library: {e}") return pd.DataFrame({'Error': [str(e)]}) def get_system_status(self) -> Tuple[str, pd.DataFrame]: """Get system status and health information.""" if not self.system_initialized: return "❌ System not initialized", pd.DataFrame() try: # Health checks rag_health = self.rag_engine.health_check() pipeline_health = self.ingestion_pipeline.health_check() # Create status message status_parts = [] all_health = {**rag_health, **pipeline_health} for component, healthy in all_health.items(): status = "✅ Healthy" if healthy else "❌ Unhealthy" status_parts.append(f"**{component.replace('_', ' ').title()}:** {status}") status_message = "## 🏥 System Health\n" + "\n".join(status_parts) # Create detailed status table health_data = [] for component, healthy in all_health.items(): health_data.append({ 'Component': component.replace('_', ' ').title(), 'Status': '✅ Healthy' if healthy else '❌ Unhealthy', 'Last Checked': datetime.now().strftime('%Y-%m-%d %H:%M:%S') }) return status_message, pd.DataFrame(health_data) except Exception as e: error_msg = f"❌ Failed to check system status: {str(e)}" logger.error(error_msg) return error_msg, pd.DataFrame() def _format_file_size(self, size_bytes: int) -> str: """Format file size in human readable format.""" if size_bytes == 0: return "0B" size_names = ["B", "KB", "MB", "GB", "TB"] i = 0 while size_bytes >= 1024 and i < len(size_names) - 1: size_bytes /= 1024.0 i += 1 return f"{size_bytes:.1f}{size_names[i]}" def create_gradio_interface(): """Create the main Gradio interface with proper error handling.""" # Initialize demo instance demo_instance = RAGGradioDemo() # Define the interface with gr.Blocks(title="Manufacturing RAG Agent", theme=gr.themes.Soft()) as demo: gr.Markdown(""" # 🏭 Manufacturing RAG Agent *Intelligent document analysis for manufacturing data* This system allows you to upload manufacturing documents (PDF, Excel, Images) and ask questions about their content using SiliconFlow embeddings and Groq LLM. """) # System initialization status with gr.Row(): system_status = gr.Markdown("**System Status:** Not initialized") init_btn = gr.Button("🚀 Initialize System", variant="primary") # Main functionality tabs with gr.Tabs(): # Document Upload Tab with gr.TabItem("📄 Document Upload"): gr.Markdown("### Upload and Process Documents") with gr.Row(): with gr.Column(): file_upload = gr.File( file_count="multiple", file_types=[".pdf", ".xlsx", ".xls", ".xlsm", ".png", ".jpg", ".jpeg"], label="Choose files to upload (PDF, Excel, Images)" ) upload_btn = gr.Button("🔄 Process Documents", variant="primary") upload_status = gr.Textbox( label="Processing Status", interactive=False, lines=3 ) # Results display upload_results = gr.Dataframe( label="Processing Results", interactive=False ) # Document Library gr.Markdown("### 📚 Document Library") refresh_docs_btn = gr.Button("🔄 Refresh Library") doc_library = gr.Dataframe( label="Uploaded Documents", interactive=False ) # Question Answering Tab with gr.TabItem("❓ Ask Questions"): gr.Markdown("### Ask Questions About Your Documents") with gr.Row(): with gr.Column(scale=2): question_input = gr.Textbox( label="Your Question", placeholder="e.g., What is the production yield mentioned in the documents?", lines=2 ) ask_btn = gr.Button("🔍 Ask Question", variant="primary") with gr.Column(scale=1): gr.Markdown("#### Settings") max_results = gr.Slider( minimum=1, maximum=10, value=5, step=1, label="Max Context Chunks" ) similarity_threshold = gr.Slider( minimum=0.0, maximum=1.0, value=0.7, step=0.1, label="Similarity Threshold" ) # Answer display answer_output = gr.Markdown(label="Answer") citations_output = gr.Markdown(label="Citations") # Performance metrics performance_metrics = gr.Dataframe( label="Performance Metrics", interactive=False ) # System Status Tab with gr.TabItem("⚙️ System Status"): gr.Markdown("### System Health & Information") check_health_btn = gr.Button("🔍 Check System Health") health_status = gr.Markdown("Click 'Check System Health' to view status...") health_details = gr.Dataframe( label="Component Health Details", interactive=False ) # Event handlers def initialize_system(): """Initialize the system and return status.""" success, message = demo_instance.initialize_system() if success: return f"**System Status:** ✅ {message}" else: return f"**System Status:** ❌ {message}" def process_files(files): """Process uploaded files.""" if not files: return "No files selected", pd.DataFrame() return demo_instance.process_uploaded_files(files) def ask_question(question, max_results, similarity_threshold): """Ask a question.""" if not question.strip(): return "Please enter a question", "", pd.DataFrame() return demo_instance.ask_question(question, max_results, similarity_threshold) def refresh_library(): """Refresh document library.""" return demo_instance.get_document_library() def check_health(): """Check system health.""" return demo_instance.get_system_status() # Connect events init_btn.click( initialize_system, outputs=[system_status] ) upload_btn.click( process_files, inputs=[file_upload], outputs=[upload_status, upload_results] ) ask_btn.click( ask_question, inputs=[question_input, max_results, similarity_threshold], outputs=[answer_output, citations_output, performance_metrics] ) refresh_docs_btn.click( refresh_library, outputs=[doc_library] ) check_health_btn.click( check_health, outputs=[health_status, health_details] ) # Auto-refresh library after upload upload_btn.click( refresh_library, outputs=[doc_library] ) return demo def main(): """Main function to launch the Gradio demo.""" try: # Create directories os.makedirs("data", exist_ok=True) os.makedirs("logs", exist_ok=True) # Create and launch the interface demo = create_gradio_interface() # Launch with configuration demo.launch( server_name="0.0.0.0", server_port=7860, share=False, debug=True, show_error=True ) except Exception as e: print(f"❌ Failed to launch Gradio demo: {e}") print("Please check your configuration and dependencies.") if __name__ == "__main__": main()