Spaces:
Build error
Build error
| ######################################################################################### | |
| # Title: Gradio Interface to LLM-chatbot with RAG-funcionality and ChromaDB on premises | |
| # Author: Andreas Fischer | |
| # Date: October 15th, 2023 | |
| # Last update: December 31th, 2023 | |
| ########################################################################################## | |
| # Get model | |
| #----------- | |
| import os | |
| import requests | |
| dbPath="/home/af/Schreibtisch/gradio/Chroma/db" | |
| if(os.path.exists(dbPath)==False): | |
| dbPath="/home/user/app/db" | |
| print(dbPath) | |
| #modelPath="/home/af/gguf/models/SauerkrautLM-7b-HerO-q8_0.gguf" | |
| modelPath="/home/af/gguf/models/mixtral-8x7b-instruct-v0.1.Q4_0.gguf" | |
| if(os.path.exists(modelPath)==False): | |
| #url="https://huggingface.co/TheBloke/WizardLM-13B-V1.2-GGUF/resolve/main/wizardlm-13b-v1.2.Q4_0.gguf" | |
| #url="https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF/resolve/main/mixtral-8x7b-instruct-v0.1.Q4_0.gguf?download=true" | |
| url="https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/resolve/main/mistral-7b-instruct-v0.2.Q4_0.gguf?download=true" | |
| response = requests.get(url) | |
| with open("./model.gguf", mode="wb") as file: | |
| file.write(response.content) | |
| print("Model downloaded") | |
| modelPath="./model.gguf" | |
| print(modelPath) | |
| # Llama-cpp-Server | |
| #------------------ | |
| import subprocess | |
| command = ["python3", "-m", "llama_cpp.server", "--model", modelPath, "--host", "0.0.0.0", "--port", "2600", "--n_threads", "2"] | |
| subprocess.Popen(command) | |
| print("Server ready!") | |
| # Chroma-DB | |
| #----------- | |
| import chromadb | |
| #client = chromadb.Client() | |
| path=dbPath | |
| client = chromadb.PersistentClient(path=path) | |
| print(client.heartbeat()) | |
| print(client.get_version()) | |
| print(client.list_collections()) | |
| from chromadb.utils import embedding_functions | |
| default_ef = embedding_functions.DefaultEmbeddingFunction() | |
| sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer") | |
| #instructor_ef = embedding_functions.InstructorEmbeddingFunction(model_name="hkunlp/instructor-large", device="cuda") | |
| print(str(client.list_collections())) | |
| global collection | |
| if("name=ChromaDB1" in str(client.list_collections())): | |
| print("ChromaDB1 found!") | |
| collection = client.get_collection(name="ChromaDB1", embedding_function=sentence_transformer_ef) | |
| else: | |
| print("ChromaDB1 created!") | |
| collection = client.create_collection( | |
| "ChromaDB1", | |
| embedding_function=sentence_transformer_ef, | |
| metadata={"hnsw:space": "cosine"}) | |
| collection.add( | |
| documents=["The meaning of life is to love.", "This is a sentence", "This is a sentence too"], | |
| metadatas=[{"source": "notion"}, {"source": "google-docs"}, {"source": "google-docs"}], | |
| ids=["doc1", "doc2", "doc3"], | |
| ) | |
| print("Database ready!") | |
| print(collection.count()) | |
| # Gradio-GUI | |
| #------------ | |
| import gradio as gr | |
| import requests | |
| import json | |
| def response(message, history): | |
| addon="" | |
| results=collection.query( | |
| query_texts=[message], | |
| n_results=2, | |
| #where={"source": "google-docs"} | |
| #where_document={"$contains":"search_string"} | |
| ) | |
| dists=["<small>(relevance: "+str(round((1-d)*100)/100)+";" for d in results['distances'][0]] | |
| sources=["source: "+s["source"]+")</small>" for s in results['metadatas'][0]] | |
| results=results['documents'][0] | |
| combination = zip(results,dists,sources) | |
| combination = [' '.join(triplets) for triplets in combination] | |
| print(combination) | |
| if(len(results)>1): | |
| addon=" Bitte berücksichtige bei deiner Antwort ggf. folgende Auszüge aus unserer Datenbank, sofern sie für die Antwort erforderlich sind. Beantworte die Frage knapp und präzise. Ignoriere unpassende Datenbank-Auszüge OHNE sie zu kommentieren, zu erwähnen oder aufzulisten:\n"+"\n".join(results) | |
| #url="https://afischer1985-wizardlm-13b-v1-2-q4-0-gguf.hf.space/v1/completions" | |
| url="http://localhost:2600/v1/completions" | |
| system="Du bist ein KI-basiertes Assistenzsystem."+addon+"\n\nUser-Anliegen:" | |
| #body={"prompt":system+"### Instruktion:\n"+message+"\n\n### Antwort:","max_tokens":500, "echo":"False","stream":"True"} #e.g. SauerkrautLM | |
| body={"prompt":"[INST]"+system+"\n"+message+"[/INST]","max_tokens":500, "echo":"False","stream":"True"} #e.g. Mixtral-Instruct | |
| response="" | |
| buffer="" | |
| print("URL: "+url) | |
| print(str(body)) | |
| print("User: "+message+"\nAI: ") | |
| for text in requests.post(url, json=body, stream=True): #-H 'accept: application/json' -H 'Content-Type: application/json' | |
| if buffer is None: buffer="" | |
| buffer=str("".join(buffer)) | |
| #print("*** Raw String: "+str(text)+"\n***\n") | |
| text=text.decode('utf-8') | |
| if((text.startswith(": ping -")==False) & (len(text.strip("\n\r"))>0)): buffer=buffer+str(text) | |
| #print("\n*** Buffer: "+str(buffer)+"\n***\n") | |
| buffer=buffer.split('"finish_reason": null}]}') | |
| if(len(buffer)==1): | |
| buffer="".join(buffer) | |
| pass | |
| if(len(buffer)==2): | |
| part=buffer[0]+'"finish_reason": null}]}' | |
| if(part.lstrip('\n\r').startswith("data: ")): part=part.lstrip('\n\r').replace("data: ", "") | |
| try: | |
| part = str(json.loads(part)["choices"][0]["text"]) | |
| print(part, end="", flush=True) | |
| response=response+part | |
| buffer="" # reset buffer | |
| except Exception as e: | |
| print("Exception:"+str(e)) | |
| pass | |
| yield response | |
| yield response+"\n\n<br><details open><summary><strong>Sources</strong></summary><br><ul>"+ "".join(["<li>" + s + "</li>" for s in combination])+"</ul></details>" | |
| gr.ChatInterface(response, chatbot=gr.Chatbot(render_markdown=True),title="German RAG-Interface to Mistral-7B-Instruct-v0.2-GGUF").queue().launch(share=True) #False, server_name="0.0.0.0", server_port=7864) | |
| print("Interface up and running!") | |