Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from peft import PeftModel, PeftConfig | |
| from transformers import AutoModelForCausalLM | |
| config = PeftConfig.from_pretrained("AliEssa555/latest-podcast-model-ft") | |
| base_model = AutoModelForCausalLM.from_pretrained("TheBloke/Mistral-7B-Instruct-v0.2-GPTQ") | |
| model = PeftModel.from_pretrained(base_model, "AliEssa555/latest-podcast-model-ft") | |
| #model_name = "path_to_your_fine_tuned_model" # Use the local path or the Hugging Face model hub ID if published | |
| #model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16) | |
| tokenizer = AutoTokenizer.from_pretrained(model) | |
| if torch.cuda.is_available(): | |
| model = model.to("cuda") | |
| # Generate a response based on user input | |
| def generate_response(user_input): | |
| # Format the input as an instructional prompt | |
| prompt = f"[INST] User: {user_input} [/INST] Assistant:" | |
| # Tokenize input and generate response | |
| inputs = tokenizer(prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu") | |
| output_tokens = model.generate(inputs["input_ids"], max_length=512, temperature=0.7, top_p=0.9, do_sample=True) | |
| # Decode and format the output | |
| response = tokenizer.decode(output_tokens[0], skip_special_tokens=True) | |
| return response.split("Assistant:")[-1].strip() # Remove "Assistant:" tag if present | |
| # Define Gradio interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## LLM Podcast Response Generator") | |
| with gr.Row(): | |
| user_input = gr.Textbox(label="Enter your question related to the podcast:", placeholder="Type your question here...") | |
| with gr.Row(): | |
| response_output = gr.Textbox(label="Model's Response") | |
| submit_button = gr.Button("Generate Response") | |
| # Connect button to the function | |
| submit_button.click(fn=generate_response, inputs=user_input, outputs=response_output) | |
| # Launch the Gradio app | |
| demo.launch() | |