Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from tenacity import retry, stop_after_attempt, wait_random_exponential
|
| 2 |
+
from tqdm import tqdm
|
| 3 |
+
import time
|
| 4 |
+
import sys
|
| 5 |
+
|
| 6 |
+
# import openai
|
| 7 |
+
import time
|
| 8 |
+
# import pandas as pd
|
| 9 |
+
import random
|
| 10 |
+
import csv
|
| 11 |
+
import os
|
| 12 |
+
import pickle
|
| 13 |
+
import json
|
| 14 |
+
import nltk
|
| 15 |
+
nltk.download('punkt')
|
| 16 |
+
nltk.download('stopwords')
|
| 17 |
+
from nltk.tokenize import sent_tokenize
|
| 18 |
+
from nltk.corpus import stopwords
|
| 19 |
+
import string
|
| 20 |
+
from typing import List
|
| 21 |
+
import difflib
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# import tiktoken
|
| 25 |
+
|
| 26 |
+
import re
|
| 27 |
+
from nltk.tokenize import sent_tokenize
|
| 28 |
+
from collections import defaultdict
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
import nltk
|
| 32 |
+
from nltk.tokenize import sent_tokenize
|
| 33 |
+
from nltk.tokenize import word_tokenize
|
| 34 |
+
import numpy as np
|
| 35 |
+
from retrieve import get_retrieved_results, get_slide
|
| 36 |
+
|
| 37 |
+
# Ensure you have downloaded the 'punkt' tokenizer models
|
| 38 |
+
nltk.download('punkt')
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
import streamlit as st
|
| 45 |
+
|
| 46 |
+
# Get the parent directory
|
| 47 |
+
# parent_dir = os.path.abspath(os.path.join(os.getcwd(), os.pardir))
|
| 48 |
+
# Add the parent directory to the system path
|
| 49 |
+
# sys.path.append(parent_dir)
|
| 50 |
+
|
| 51 |
+
from utils import AzureModels, write_to_file, read_from_file
|
| 52 |
+
# from utils_open import OpenModels
|
| 53 |
+
|
| 54 |
+
# Function to calculate similarity
|
| 55 |
+
def calculate_similarity(sentence1: str, sentence2: str) -> float:
|
| 56 |
+
return difflib.SequenceMatcher(None, sentence1, sentence2).ratio()
|
| 57 |
+
|
| 58 |
+
# Function to highlight sentences based on similarity
|
| 59 |
+
def highlight_sentences(predicted: str, ground_truth: str) -> str:
|
| 60 |
+
ground_truth_sentences = nltk.sent_tokenize(ground_truth)
|
| 61 |
+
predicted_sentences = nltk.sent_tokenize(predicted)
|
| 62 |
+
|
| 63 |
+
highlighted_text = ""
|
| 64 |
+
|
| 65 |
+
for pred_sentence in predicted_sentences:
|
| 66 |
+
max_similarity = 0
|
| 67 |
+
for gt_sentence in ground_truth_sentences:
|
| 68 |
+
similarity = calculate_similarity(pred_sentence, gt_sentence)
|
| 69 |
+
if similarity > max_similarity:
|
| 70 |
+
max_similarity = similarity
|
| 71 |
+
# Determine shade of green
|
| 72 |
+
shade = max_similarity # No need to convert to int, max_similarity is already in [0, 1]
|
| 73 |
+
highlighted_text += f'<span style="background-color: rgba(0, 255, 0, {shade})">{pred_sentence}</span> '
|
| 74 |
+
|
| 75 |
+
return highlighted_text
|
| 76 |
+
|
| 77 |
+
st.title('Multi-Document Narrative Generation')
|
| 78 |
+
|
| 79 |
+
options = ["Select", "Adobe Firefly", "Adobe Acrobat"]
|
| 80 |
+
selection = st.selectbox('Select an example', options)
|
| 81 |
+
|
| 82 |
+
if selection=="Select":
|
| 83 |
+
pass
|
| 84 |
+
elif selection=="Adobe Firefly":
|
| 85 |
+
with open('wiki_1.json', 'r') as fr:
|
| 86 |
+
list_1 = json.load(fr)
|
| 87 |
+
|
| 88 |
+
with open('wiki_2.json', 'r') as fr:
|
| 89 |
+
list_2 = json.load(fr)
|
| 90 |
+
document_name = "Adobe Firefly"
|
| 91 |
+
section_names = ["Introduction"]*7+["History"]*2
|
| 92 |
+
ref_doc_indices = np.arange(1,8).tolist() + np.arange(1,3).tolist()
|
| 93 |
+
else:
|
| 94 |
+
with open('wiki_2.json', 'r') as fr:
|
| 95 |
+
list_1 = json.load(fr)
|
| 96 |
+
|
| 97 |
+
with open('wiki_1.json', 'r') as fr:
|
| 98 |
+
list_2 = json.load(fr)
|
| 99 |
+
document_name = "Adobe Acrobat"
|
| 100 |
+
section_names = ["Introduction"]*3+["History"]*3+["Document Cloud"]*2
|
| 101 |
+
ref_doc_indices = np.arange(1,4).tolist() + np.arange(1,4).tolist() + np.arange(1,3).tolist()
|
| 102 |
+
|
| 103 |
+
inp_doc_list = []
|
| 104 |
+
inp_keys_list = []
|
| 105 |
+
retrieved_doc_list = []
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
if selection!='Select':
|
| 109 |
+
# for item, ret_item in zip(list_1, retrieved_out):
|
| 110 |
+
for item in list_1:
|
| 111 |
+
for key in item['ref_abstract']:
|
| 112 |
+
inp_doc_list.append(item['ref_abstract'][key])
|
| 113 |
+
inp_keys_list.append(key)
|
| 114 |
+
# retrieved_doc_list.append(ret_item['ref_abstract'][key]['abstract'])
|
| 115 |
+
# Initialize session state
|
| 116 |
+
if 'retrieve_clicked' not in st.session_state:
|
| 117 |
+
st.session_state.retrieve_clicked = False
|
| 118 |
+
|
| 119 |
+
retrieve_prompt_template = "{} : Document {} for the '{}' Section of the Article titled '{}'"
|
| 120 |
+
|
| 121 |
+
ui_doc_list = []
|
| 122 |
+
ui_retrieved_doc_list = []
|
| 123 |
+
|
| 124 |
+
# 5 input text boxes for 5 input documents
|
| 125 |
+
st.header('Input Documents')
|
| 126 |
+
# doc1 = st.text_area('Document 1', value="1. What up bruh??")
|
| 127 |
+
for i in range(len(section_names)):
|
| 128 |
+
ui_doc_list.append(st.text_area(retrieve_prompt_template.format(inp_keys_list[i], ref_doc_indices[i], section_names[i], document_name), value=inp_doc_list[i]))
|
| 129 |
+
|
| 130 |
+
if st.button('Retrieve'):
|
| 131 |
+
if 'organize_clicked' not in st.session_state:
|
| 132 |
+
st.session_state.organize_clicked = False
|
| 133 |
+
retrieved_out = get_retrieved_results("gpt4o", 0, "fixed", list_2, list_1)
|
| 134 |
+
write_to_file("retrieved_docs.json", retrieved_out)
|
| 135 |
+
retrieved_out_train = get_retrieved_results("gpt4o", 0, "fixed", list_1, list_2)
|
| 136 |
+
write_to_file("retrieved_docs_train.json", retrieved_out_train)
|
| 137 |
+
|
| 138 |
+
for ret_item in retrieved_out:
|
| 139 |
+
for key in ret_item['ref_abstract']:
|
| 140 |
+
# inp_doc_list.append(item['ref_abstract'][key])
|
| 141 |
+
retrieved_doc_list.append(ret_item['ref_abstract'][key]['abstract'])
|
| 142 |
+
|
| 143 |
+
# Step 2: Lowercase the documents
|
| 144 |
+
st.session_state.retrieve_clicked = True
|
| 145 |
+
st.header('Retrieved Documents')
|
| 146 |
+
|
| 147 |
+
for i in range(len(section_names)):
|
| 148 |
+
ui_retrieved_doc_list.append(st.text_area(retrieve_prompt_template.format(inp_keys_list[i], ref_doc_indices[i], section_names[i], document_name), value=retrieved_doc_list[i]))
|
| 149 |
+
if st.session_state.retrieve_clicked:
|
| 150 |
+
if st.button('Organize'):
|
| 151 |
+
if 'summarize_clicked' not in st.session_state:
|
| 152 |
+
st.session_state.summarize_clicked = False
|
| 153 |
+
st.session_state.organize_clicked = True
|
| 154 |
+
st.header("Organization of the documents in the narrative")
|
| 155 |
+
topics_list = ["Introduction", "History", "Document Cloud"]
|
| 156 |
+
|
| 157 |
+
organize_list = []
|
| 158 |
+
ui_organize_list = []
|
| 159 |
+
|
| 160 |
+
test_list = read_from_file("retrieved_docs.json")
|
| 161 |
+
train_list = read_from_file("retrieved_docs_train.json")
|
| 162 |
+
organize_out = get_retrieved_results("gpt4o", 1, "fixed", train_list, test_list, True)
|
| 163 |
+
for i in range(len(organize_out)):
|
| 164 |
+
organize_list.append(organize_out[i])
|
| 165 |
+
ui_organize_list.append(st.text_area("Section: " + topics_list[i], value=organize_out[i]))
|
| 166 |
+
write_to_file("organized_docs.json", organize_out)
|
| 167 |
+
|
| 168 |
+
if st.session_state.organize_clicked:
|
| 169 |
+
if st.button("Summarize"):
|
| 170 |
+
# if 'narrative_clicked' not in st.session_state:
|
| 171 |
+
# st.session_state.narrative_clicked = False
|
| 172 |
+
st.session_state.summarize_clicked = True
|
| 173 |
+
st.header("Intent-based multi-document summary")
|
| 174 |
+
topics_list = ["Introduction", "History", "Document Cloud"]
|
| 175 |
+
generate_list = []
|
| 176 |
+
ui_generate_list = []
|
| 177 |
+
slides_list = []
|
| 178 |
+
test_list = read_from_file("retrieved_docs.json")
|
| 179 |
+
train_list = read_from_file("retrieved_docs_train.json")
|
| 180 |
+
organize_out = read_from_file("organized_docs.json")
|
| 181 |
+
gen_summary_dict = get_retrieved_results("gpt4o", 1, "fixed", train_list, test_list, False, organize_out)
|
| 182 |
+
for i in range(len(gen_summary_dict)):
|
| 183 |
+
highlighted_summary = highlight_sentences(gen_summary_dict[i], test_list[i]['abstract'])
|
| 184 |
+
slides_list.append(get_slide(topics_list[i], gen_summary_dict[i]))
|
| 185 |
+
# generate_list.append(.format(topics_list[i], gen_summary_dict[i]))
|
| 186 |
+
st.markdown(f"## {topics_list[i]}")
|
| 187 |
+
# st.markdown(f"*{gen_summary_dict[i]}*")
|
| 188 |
+
st.markdown(highlighted_summary, unsafe_allow_html=True)
|
| 189 |
+
st.header("Generated Narrative")
|
| 190 |
+
for i in range(len(slides_list)):
|
| 191 |
+
st.markdown("---")
|
| 192 |
+
st.markdown(slides_list[i])
|
| 193 |
+
st.markdown("---")
|
| 194 |
+
# if st.session_state.summarize_clicked:
|
| 195 |
+
# if st.button("Narrative"):
|
| 196 |
+
# st.session_state.narrative_clicked = True
|