|
|
|
|
|
|
|
|
import math |
|
|
from dataclasses import dataclass |
|
|
from enum import Enum |
|
|
from typing import Optional, Tuple, Union |
|
|
|
|
|
import torch |
|
|
from torch import nn |
|
|
from torch.nn import functional as F |
|
|
from torch.nn.attention.flex_attention import (BlockMask, _mask_mod_signature, |
|
|
flex_attention) |
|
|
from xformers.ops import AttentionBias, fmha |
|
|
|
|
|
from core import probe |
|
|
|
|
|
|
|
|
class InitStdFactor(Enum): |
|
|
DISABLED = "disabled" |
|
|
GLOBAL_DEPTH = "global_depth" |
|
|
CURRENT_DEPTH = "current_depth" |
|
|
DIM_RATIO = "dim_ratio" |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class BaseTransformerArgs: |
|
|
dim: int = 512 |
|
|
n_layers: int = 8 |
|
|
head_dim: Optional[int] = None |
|
|
n_heads: Optional[int] = None |
|
|
n_kv_heads: Optional[int] = None |
|
|
|
|
|
ffn_dim_multiplier: Optional[float] = None |
|
|
|
|
|
multiple_of: int = 256 |
|
|
|
|
|
norm_eps: float = 1e-5 |
|
|
|
|
|
rope_theta: float = 10000.0 |
|
|
|
|
|
old_context_len: int = 8192 |
|
|
rope_scale_factor: int = 1 |
|
|
low_freq_factor: int = 1 |
|
|
high_freq_factor: int = 32 |
|
|
|
|
|
init_base_std: Optional[float] = None |
|
|
init_std_factor: str = "disabled" |
|
|
|
|
|
max_seqlen: int = 1024 |
|
|
|
|
|
|
|
|
def cross_entropy(pred, target, **kwargs): |
|
|
return F.nll_loss( |
|
|
F.log_softmax(pred.flatten(end_dim=-2).float(), -1), |
|
|
target.flatten(end_dim=-1), |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
def repeat_kv(x: torch.Tensor, n_rep: int, dim: int) -> torch.Tensor: |
|
|
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)""" |
|
|
assert dim == 2, "Only dim=2 is supported. Check the implementation for other dims." |
|
|
bs, slen, n_kv_heads, head_dim = x.shape |
|
|
if n_rep == 1: |
|
|
return x |
|
|
return ( |
|
|
x[:, :, :, None, :] |
|
|
.expand(bs, slen, n_kv_heads, n_rep, head_dim) |
|
|
.reshape(bs, slen, n_kv_heads * n_rep, head_dim) |
|
|
) |
|
|
|
|
|
|
|
|
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor, seq_dim: int): |
|
|
""" |
|
|
Reshape frequency tensor for broadcasting it with another tensor. |
|
|
|
|
|
This function reshapes the frequency tensor to have the same shape as the target tensor 'x' |
|
|
for the purpose of broadcasting the frequency tensor during element-wise operations. |
|
|
|
|
|
Args: |
|
|
freqs_cis (torch.Tensor): Frequency tensor to be reshaped. |
|
|
x (torch.Tensor): Target tensor for broadcasting compatibility. |
|
|
seq_dim (int): Sequence dimension index. |
|
|
|
|
|
Returns: |
|
|
torch.Tensor: Reshaped frequency tensor. |
|
|
""" |
|
|
ndim = x.ndim |
|
|
assert 0 <= seq_dim < ndim |
|
|
assert freqs_cis.shape == ( |
|
|
x.shape[seq_dim], |
|
|
x.shape[-3], |
|
|
2, |
|
|
2, |
|
|
), f"freqs_cis vs x: {(freqs_cis.shape, x.shape)}" |
|
|
shape = [ |
|
|
d if i == seq_dim or i == ndim - 3 else 1 for i, d in enumerate(x.shape[:-2]) |
|
|
] + [2, 2] |
|
|
return freqs_cis.view(*shape) |
|
|
|
|
|
|
|
|
def apply_rotary_emb( |
|
|
xq: torch.Tensor, |
|
|
xk: torch.Tensor, |
|
|
seq_dim: int, |
|
|
freqs_cis: torch.Tensor, |
|
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
xq_ = xq.reshape(*xq.shape[:-1], -1, 1, 2) |
|
|
xk_ = xk.reshape(*xk.shape[:-1], -1, 1, 2) |
|
|
freqs_cis = reshape_for_broadcast( |
|
|
freqs_cis, xq_, seq_dim |
|
|
).float() |
|
|
xq_out = (xq_ * freqs_cis).sum(5).flatten(3) |
|
|
xk_out = (xk_ * freqs_cis).sum(5).flatten(3) |
|
|
return xq_out.type_as(xq), xk_out.type_as(xk) |
|
|
|
|
|
|
|
|
def causal_mask(b, h, q_idx, kv_idx): |
|
|
return q_idx >= kv_idx |
|
|
|
|
|
|
|
|
def lengths_to_start_ids(lengths): |
|
|
doc_start = lengths.cumsum(0) |
|
|
doc_start = doc_start.roll(1) |
|
|
doc_start[0] = 0 |
|
|
return doc_start |
|
|
|
|
|
|
|
|
def lengths_to_local_ids(lengths): |
|
|
assert lengths.ndim == 1 |
|
|
nb_seqs = lengths.size(0) |
|
|
total_seqlen = lengths.sum() |
|
|
|
|
|
doc_id = torch.repeat_interleave(lengths) |
|
|
|
|
|
doc_start = lengths_to_start_ids(lengths) |
|
|
|
|
|
doc_start = doc_start[doc_id] |
|
|
|
|
|
tok_id = torch.arange(total_seqlen, device=lengths.device) - doc_start |
|
|
|
|
|
return doc_id, tok_id |
|
|
|
|
|
|
|
|
def generate_doc_mask_mod( |
|
|
mask_mod: _mask_mod_signature, |
|
|
lengths: torch.Tensor, |
|
|
kv_lengths: Optional[torch.Tensor] = None, |
|
|
) -> _mask_mod_signature: |
|
|
"""Generates mask mods that apply to inputs to flex attention in the sequence stacked |
|
|
format. |
|
|
|
|
|
Args: |
|
|
mask_mod: The mask mod to apply to the documents |
|
|
lengths: Lengths of each document |
|
|
|
|
|
Note: |
|
|
What is the sequence stacked format? When assembling batches of inputs, we |
|
|
take multiple sequences and stack them together to form 1 large sequence. We then |
|
|
use masking to ensure that the attention scores are only applied to tokens within |
|
|
the same document. |
|
|
|
|
|
Example: |
|
|
|
|
|
- Square mask |
|
|
doc_mask lengths |
|
|
a a b b b c c 2 3 2 |
|
|
a 1 0 0 0 0 0 0 |
|
|
a 1 1 0 0 0 0 0 |
|
|
b 0 0 1 0 0 0 0 |
|
|
b 0 0 1 1 0 0 0 |
|
|
b 0 0 1 1 1 0 0 |
|
|
c 0 0 0 0 0 1 0 |
|
|
c 0 0 0 0 0 1 1 |
|
|
|
|
|
""" |
|
|
kv_lengths = kv_lengths if kv_lengths is not None else lengths |
|
|
q_document_id, q_token_id = lengths_to_local_ids(lengths) |
|
|
kv_document_id, kv_token_id = lengths_to_local_ids(kv_lengths) |
|
|
q_max_idx = lengths.sum() - 1 |
|
|
kv_max_idx = kv_lengths.sum() - 1 |
|
|
|
|
|
def doc_mask_mod(b, h, q_idx, kv_idx): |
|
|
q_idx_cap = torch.minimum(q_max_idx, q_idx) |
|
|
kv_idx_cap = torch.minimum(kv_max_idx, kv_idx) |
|
|
valid_idx = (q_idx <= q_max_idx) & (kv_idx <= kv_max_idx) |
|
|
same_doc = q_document_id[q_idx_cap] == kv_document_id[kv_idx_cap] |
|
|
q_logical = q_token_id[q_idx_cap] |
|
|
kv_logical = kv_token_id[kv_idx_cap] |
|
|
inner_mask = mask_mod(b, h, q_logical, kv_logical) |
|
|
return same_doc & inner_mask & valid_idx |
|
|
|
|
|
return doc_mask_mod |
|
|
|
|
|
|
|
|
|
|
|
class RotaryEmbedding(torch.nn.Module): |
|
|
""" |
|
|
RotaryEmbedding Module |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
theta: float, |
|
|
head_dim: int, |
|
|
max_seqlen: int = 1024, |
|
|
scale_factor: int = 1, |
|
|
low_freq_factor: int = 1, |
|
|
high_freq_factor: int = 32, |
|
|
old_context_len: int = 8192, |
|
|
): |
|
|
super().__init__() |
|
|
|
|
|
self.theta = theta |
|
|
self.head_dim = head_dim |
|
|
self.max_seqlen = max_seqlen |
|
|
self.scale_factor = scale_factor |
|
|
self.low_freq_factor = low_freq_factor |
|
|
self.high_freq_factor = high_freq_factor |
|
|
self.old_context_len = old_context_len |
|
|
if scale_factor != 1: |
|
|
self.low_freq_wavelen = old_context_len / low_freq_factor |
|
|
self.high_freq_wavelen = old_context_len / high_freq_factor |
|
|
assert self.low_freq_wavelen >= self.high_freq_wavelen |
|
|
|
|
|
def reset_parameters(self): |
|
|
self.register_buffer( |
|
|
"freqs_cis", |
|
|
self.precompute_freqs_cis( |
|
|
dim=self.head_dim, end=self.max_seqlen, theta=self.theta |
|
|
), |
|
|
persistent=False, |
|
|
) |
|
|
|
|
|
def apply_scaling(self, freqs): |
|
|
if self.scale_factor == 1: |
|
|
return freqs |
|
|
new_freqs = [] |
|
|
for freq in freqs: |
|
|
wavelen = 2 * math.pi / freq |
|
|
if wavelen < self.high_freq_wavelen: |
|
|
new_freqs.append(freq) |
|
|
elif wavelen > self.low_freq_wavelen: |
|
|
new_freqs.append(freq / self.scale_factor) |
|
|
else: |
|
|
assert self.low_freq_wavelen != self.high_freq_wavelen |
|
|
smooth = (self.old_context_len / wavelen - self.low_freq_factor) / ( |
|
|
self.high_freq_factor - self.low_freq_factor |
|
|
) |
|
|
new_freqs.append( |
|
|
(1 - smooth) * freq / self.scale_factor + smooth * freq |
|
|
) |
|
|
return torch.tensor(new_freqs, dtype=freqs.dtype, device=freqs.device) |
|
|
|
|
|
def precompute_freqs_cis( |
|
|
self, |
|
|
dim: int, |
|
|
end: int, |
|
|
theta: float = 10000.0, |
|
|
): |
|
|
""" |
|
|
Precompute the frequency tensor for complex exponentials (cis) with given dimensions. |
|
|
|
|
|
This function calculates a frequency tensor with complex exponentials using the given dimension 'dim' |
|
|
and the end index 'end'. The 'theta' parameter scales the frequencies. |
|
|
The returned tensor contains complex values in complex64 data type. |
|
|
|
|
|
Args: |
|
|
dim (int): Dimension of the frequency tensor. |
|
|
end (int): End index for precomputing frequencies. |
|
|
theta (float, optional): Scaling factor for frequency computation. Defaults to 10000.0. |
|
|
|
|
|
Returns: |
|
|
torch.Tensor: Precomputed frequency tensor with complex exponentials. |
|
|
""" |
|
|
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) |
|
|
freqs = self.apply_scaling(freqs) |
|
|
|
|
|
t = torch.arange(end, device=freqs.device) |
|
|
freqs = torch.outer(t, freqs).float() |
|
|
|
|
|
cos, sin = freqs.cos(), freqs.sin() |
|
|
|
|
|
return torch.stack((cos, -sin, sin, cos), dim=-1).view(*freqs.size(), 2, 2) |
|
|
|
|
|
def forward( |
|
|
self, seqlen: Optional[int] = None, tok_idx: Optional[torch.Tensor] = None |
|
|
): |
|
|
""" |
|
|
Return freqs_cis corresponding to consecutive seqlen positions or the corresponding tok_idx positions |
|
|
Args: |
|
|
seqlen (int): Contiguous sequence length |
|
|
tok_idx (torch.Tensor[int]): Position indices of each token this overrides seqlen |
|
|
|
|
|
Returns: |
|
|
Tuple(torch.Tensor, torch.Tensor): Embedded input tensor and freqs_cis |
|
|
""" |
|
|
test = (seqlen is not None) or (tok_idx is not None) |
|
|
assert test, "Should provide atleast seqlen or tok_idx" |
|
|
if tok_idx is not None: |
|
|
return self.freqs_cis[tok_idx] |
|
|
elif seqlen is not None: |
|
|
return self.freqs_cis[0:seqlen] |
|
|
|
|
|
|
|
|
class RMSNorm(nn.Module): |
|
|
""" |
|
|
Initialize the RMSNorm normalization layer. |
|
|
|
|
|
Args: |
|
|
dim (int): The dimension of the input tensor. |
|
|
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6. |
|
|
|
|
|
Attributes: |
|
|
eps (float): A small value added to the denominator for numerical stability. |
|
|
weight (nn.Parameter): Learnable scaling parameter. |
|
|
|
|
|
""" |
|
|
|
|
|
def __init__(self, dim: int, eps: float = 1e-6): |
|
|
super().__init__() |
|
|
self.eps = eps |
|
|
self.weight = nn.Parameter(torch.ones(dim)) |
|
|
|
|
|
def _norm(self, x: torch.Tensor): |
|
|
return x * torch.rsqrt((x * x).mean(-1, keepdim=True) + self.eps) |
|
|
|
|
|
def forward(self, x: torch.Tensor): |
|
|
x = probe.log_stats(x, "resid") |
|
|
output = self._norm(x.float()) |
|
|
return (output * self.weight.float()).type_as(x) |
|
|
|
|
|
def reset_parameters(self): |
|
|
torch.nn.init.ones_(self.weight) |
|
|
|
|
|
|
|
|
class TiedLinear(nn.Module): |
|
|
def __init__(self, tied_module: nn.Module) -> None: |
|
|
super().__init__() |
|
|
self.tied_module = tied_module |
|
|
if not hasattr(tied_module, "weight"): |
|
|
raise AttributeError( |
|
|
"Provided module does not have attribute 'weight'. Please check your tied_module." |
|
|
) |
|
|
|
|
|
def __call__(self, x: torch.Tensor) -> torch.Tensor: |
|
|
return F.linear(x, self.tied_module.weight) |
|
|
|
|
|
|
|
|
class Attention(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
dim: int, |
|
|
head_dim: int, |
|
|
n_heads: int, |
|
|
n_kv_heads: int, |
|
|
rope_theta: float, |
|
|
): |
|
|
super().__init__() |
|
|
|
|
|
self.dim = dim |
|
|
self.head_dim = head_dim |
|
|
self.rope_theta = rope_theta |
|
|
|
|
|
self.n_heads = n_heads |
|
|
self.n_kv_heads = n_kv_heads |
|
|
self.heads_per_group = self.n_heads // self.n_kv_heads |
|
|
|
|
|
self.wq = nn.Linear( |
|
|
dim, |
|
|
n_heads * head_dim, |
|
|
bias=False, |
|
|
) |
|
|
self.wk = nn.Linear( |
|
|
dim, |
|
|
n_kv_heads * head_dim, |
|
|
bias=False, |
|
|
) |
|
|
self.wv = nn.Linear( |
|
|
dim, |
|
|
n_kv_heads * head_dim, |
|
|
bias=False, |
|
|
) |
|
|
|
|
|
self.wo = nn.Linear( |
|
|
n_heads * head_dim, |
|
|
dim, |
|
|
bias=False, |
|
|
) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
x: torch.Tensor, |
|
|
freq_cis: torch.Tensor, |
|
|
tok_idx: Optional[torch.Tensor] = None, |
|
|
mask: Optional[Union[BlockMask, AttentionBias, str]] = None, |
|
|
attn_impl: str = "sdpa", |
|
|
) -> torch.Tensor: |
|
|
|
|
|
bsz, seq_len, dim = x.shape |
|
|
xq = self.wq(x.view_as(x)) |
|
|
xk = self.wk(x.view_as(x)) |
|
|
xv = self.wv(x.view_as(x)) |
|
|
|
|
|
output_shape = xq.shape |
|
|
|
|
|
xq = xq.view(bsz, seq_len, self.n_heads, self.head_dim) |
|
|
xk = xk.view(bsz, seq_len, self.n_kv_heads, self.head_dim) |
|
|
xv = xv.view(bsz, seq_len, self.n_kv_heads, self.head_dim) |
|
|
|
|
|
xq, xk = apply_rotary_emb(xq, xk, 1, freq_cis[0:seq_len]) |
|
|
|
|
|
|
|
|
|
|
|
if hasattr(self, "kv_cache"): |
|
|
xk, xv = self.kv_cache.update(xk, xv, tok_idx) |
|
|
|
|
|
xk = repeat_kv(xk, self.heads_per_group, dim=2) |
|
|
xv = repeat_kv(xv, self.heads_per_group, dim=2) |
|
|
|
|
|
if attn_impl == "flex_attention": |
|
|
assert mask is None or isinstance(mask, BlockMask) |
|
|
xq, xk, xv = map(lambda e: e.transpose(1, 2), (xq, xk, xv)) |
|
|
output = flex_attention(xq, xk, xv, block_mask=mask) |
|
|
output = output.transpose(1, 2).contiguous() |
|
|
|
|
|
elif attn_impl == "fmha": |
|
|
assert mask is None or isinstance(mask, AttentionBias) |
|
|
output = fmha.memory_efficient_attention(xq, xk, xv, attn_bias=mask) |
|
|
|
|
|
|
|
|
elif attn_impl == "sdpa": |
|
|
xq, xk, xv = map(lambda e: e.transpose(1, 2), (xq, xk, xv)) |
|
|
assert mask is None or isinstance(mask, (str, torch.Tensor)) |
|
|
is_causal = (mask == "causal") if isinstance(mask, str) else False |
|
|
mask = mask if isinstance(mask, torch.Tensor) else None |
|
|
output = F.scaled_dot_product_attention( |
|
|
xq, |
|
|
xk, |
|
|
xv, |
|
|
is_causal=is_causal, |
|
|
attn_mask=mask, |
|
|
) |
|
|
output = output.transpose(1, 2).contiguous() |
|
|
else: |
|
|
raise NotImplementedError( |
|
|
f"Attention implementation {attn_impl} not supported" |
|
|
) |
|
|
|
|
|
output = self.wo(output.reshape(output_shape)) |
|
|
|
|
|
return output |
|
|
|
|
|
def reset_parameters(self, init_std=None, factor=1.0): |
|
|
init_std = init_std or (self.dim ** (-0.5)) |
|
|
|
|
|
for w in [self.wq, self.wk, self.wv]: |
|
|
nn.init.trunc_normal_( |
|
|
w.weight, |
|
|
mean=0.0, |
|
|
std=init_std, |
|
|
a=-3 * init_std, |
|
|
b=3 * init_std, |
|
|
) |
|
|
|
|
|
nn.init.trunc_normal_( |
|
|
self.wo.weight, |
|
|
mean=0.0, |
|
|
std=init_std / factor, |
|
|
a=-3 * init_std, |
|
|
b=3 * init_std, |
|
|
) |
|
|
|
|
|
|
|
|
class FeedForward(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
dim: int, |
|
|
hidden_dim: int, |
|
|
multiple_of: int, |
|
|
ffn_dim_multiplier: Optional[float], |
|
|
mp_size: int = 1, |
|
|
): |
|
|
super().__init__() |
|
|
|
|
|
hidden_dim = int(2 * hidden_dim / 3) |
|
|
if ffn_dim_multiplier is not None: |
|
|
hidden_dim = int(ffn_dim_multiplier * hidden_dim) |
|
|
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) |
|
|
assert hidden_dim % mp_size == 0 |
|
|
|
|
|
self.dim = dim |
|
|
self.hidden_dim = hidden_dim |
|
|
|
|
|
self.w1 = nn.Linear( |
|
|
dim, |
|
|
hidden_dim, |
|
|
bias=False, |
|
|
) |
|
|
self.w3 = nn.Linear( |
|
|
dim, |
|
|
hidden_dim, |
|
|
bias=False, |
|
|
) |
|
|
self.w2 = nn.Linear( |
|
|
hidden_dim, |
|
|
dim, |
|
|
bias=False, |
|
|
) |
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
x1 = self.w1(x.view_as(x)) |
|
|
x3 = self.w3(x.view_as(x)) |
|
|
output = self.w2(F.silu(x1) * x3) |
|
|
return output |
|
|
|
|
|
def reset_parameters(self, init_std=None, factor=1.0): |
|
|
in_init_std = init_std or (self.dim ** (-0.5)) |
|
|
out_init_std = init_std or (self.hidden_dim ** (-0.5)) |
|
|
in_init_std = in_init_std |
|
|
out_init_std = out_init_std / factor |
|
|
for w in [self.w1, self.w3]: |
|
|
nn.init.trunc_normal_( |
|
|
w.weight, |
|
|
mean=0.0, |
|
|
std=in_init_std, |
|
|
a=-3 * in_init_std, |
|
|
b=3 * in_init_std, |
|
|
) |
|
|
nn.init.trunc_normal_( |
|
|
self.w2.weight, |
|
|
mean=0.0, |
|
|
std=out_init_std, |
|
|
a=-3 * out_init_std, |
|
|
b=3 * out_init_std, |
|
|
) |
|
|
|
|
|
|
|
|
class TransformerBlock(nn.Module): |
|
|
def __init__(self, args: BaseTransformerArgs): |
|
|
super().__init__() |
|
|
|
|
|
assert (args.head_dim is not None) or ( |
|
|
args.n_heads is not None |
|
|
), "Should specify at least head_dim or n_heads" |
|
|
self.head_dim = args.head_dim or args.dim // args.n_heads |
|
|
self.n_heads = args.n_heads or args.dim // args.head_dim |
|
|
self.n_kv_heads = args.n_kv_heads or self.n_heads |
|
|
|
|
|
assert args.n_heads % self.n_kv_heads == 0 |
|
|
assert args.dim % args.n_heads == 0 |
|
|
|
|
|
self.attention = Attention( |
|
|
dim=args.dim, |
|
|
head_dim=self.head_dim, |
|
|
n_heads=self.n_heads, |
|
|
n_kv_heads=self.n_kv_heads, |
|
|
rope_theta=args.rope_theta, |
|
|
) |
|
|
self.feed_forward = FeedForward( |
|
|
dim=args.dim, |
|
|
hidden_dim=4 * args.dim, |
|
|
multiple_of=args.multiple_of, |
|
|
ffn_dim_multiplier=args.ffn_dim_multiplier, |
|
|
) |
|
|
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps) |
|
|
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
x: torch.Tensor, |
|
|
freq_cis: torch.Tensor, |
|
|
tok_idx: Optional[torch.Tensor] = None, |
|
|
mask: Optional[Union[BlockMask, AttentionBias, str]] = None, |
|
|
attn_impl: str = "sdpa", |
|
|
) -> torch.Tensor: |
|
|
|
|
|
h = x + self.attention( |
|
|
self.attention_norm(x), |
|
|
freq_cis, |
|
|
tok_idx=tok_idx, |
|
|
mask=mask, |
|
|
attn_impl=attn_impl, |
|
|
) |
|
|
out = h + self.feed_forward(self.ffn_norm(h)) |
|
|
return out |
|
|
|
|
|
def init_weights(self, init_std=None, factor=1.0): |
|
|
self.attention.reset_parameters(init_std, factor) |
|
|
self.attention_norm.reset_parameters() |
|
|
|
|
|
self.feed_forward.reset_parameters(init_std, factor) |
|
|
self.ffn_norm.reset_parameters() |
|
|
|
|
|
|
|
|
class BaseTransformer(nn.Module): |
|
|
def __init__(self, args: BaseTransformerArgs): |
|
|
super().__init__() |
|
|
self.dim = args.dim |
|
|
self.init_base_std = args.init_base_std |
|
|
self.init_std_factor = InitStdFactor(args.init_std_factor) |
|
|
self.max_seqlen = args.max_seqlen |
|
|
self.rope_embeddings = RotaryEmbedding( |
|
|
theta=args.rope_theta, |
|
|
head_dim=args.head_dim or args.dim // args.n_heads, |
|
|
max_seqlen=args.max_seqlen, |
|
|
scale_factor=args.rope_scale_factor, |
|
|
low_freq_factor=args.low_freq_factor, |
|
|
high_freq_factor=args.high_freq_factor, |
|
|
old_context_len=args.old_context_len, |
|
|
) |
|
|
|
|
|
self.layers = nn.ModuleList() |
|
|
for _ in range(args.n_layers): |
|
|
self.layers.append(TransformerBlock(args)) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
h, |
|
|
tok_idx: Optional[torch.Tensor] = None, |
|
|
mask: Optional[Union[BlockMask, AttentionBias, str]] = None, |
|
|
attn_impl: str = "sdpa", |
|
|
): |
|
|
|
|
|
freq_cis = self.rope_embeddings(seqlen=self.max_seqlen, tok_idx=tok_idx) |
|
|
|
|
|
for i, layer in enumerate(self.layers): |
|
|
h = layer(h, freq_cis, tok_idx=tok_idx, mask=mask, attn_impl=attn_impl) |
|
|
return h |
|
|
|
|
|
def reset_parameters(self): |
|
|
|
|
|
self.rope_embeddings.reset_parameters() |
|
|
|
|
|
def init_weights(self): |
|
|
self.reset_parameters() |
|
|
for depth, layer in enumerate(self.layers): |
|
|
factor = { |
|
|
InitStdFactor.CURRENT_DEPTH: (2 * (depth + 1)) ** 0.5, |
|
|
InitStdFactor.GLOBAL_DEPTH: (2 * (len(self.layers) + 1)) ** 0.5, |
|
|
InitStdFactor.DIM_RATIO: self.dim / 4096, |
|
|
InitStdFactor.DISABLED: 1.0, |
|
|
}[self.init_std_factor] |
|
|
|
|
|
layer.init_weights(self.init_base_std, factor) |
|
|
|