from collections import OrderedDict from dataclasses import asdict from functools import partial from logging import getLogger from typing import Callable, Optional, Literal import numpy as np import torch import torch.nn as nn from einops import rearrange from timm.layers import DropPath from torch.nn import functional as F from torch.nn.init import constant_, xavier_uniform_ from torch.nn.parameter import Parameter from torch.utils.checkpoint import checkpoint import types from core.vision_encoder.rope import Rope2D from core.vision_encoder.config import PEConfig, PETextConfig, PE_VISION_CONFIG, PE_TEXT_CONFIG, fetch_pe_checkpoint logger = getLogger() class LayerScale(nn.Module): def __init__(self, dim, init_values=1e-5, inplace=False): super().__init__() self.inplace = inplace self.dim = dim self.init_values = init_values def forward(self, x): return x.mul_(self.gamma) if self.inplace else x * self.gamma def init_tensors(self): self.gamma = nn.Parameter(self.init_values * torch.ones(self.dim)) class AttentionPooling(nn.Module): def __init__( self, embed_dim: int, num_heads: int, num_probe: int = 1, mlp_ratio: int = 4, act_layer: Callable = nn.GELU, norm_layer: Callable = nn.LayerNorm, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.probe = nn.Parameter(torch.randn(1, num_probe, self.embed_dim)) self.attn = nn.MultiheadAttention(self.embed_dim, self.num_heads, batch_first=True) self.layernorm = norm_layer(embed_dim) self.mlp_width = int(embed_dim * mlp_ratio) self.mlp = nn.Sequential( OrderedDict( [ ("c_fc", nn.Linear(self.embed_dim, self.mlp_width)), ("gelu", act_layer()), ("c_proj", nn.Linear(self.mlp_width, self.embed_dim)), ] ) ) self._is_converted = False def forward(self, x: torch.Tensor): # This is the original forward method that will be replaced. batch, _, _ = x.shape q = self.probe.repeat((batch, 1, 1)).to(x.dtype) x_attn = self.attn(q, x, x, need_weights=False)[0] x = x_attn + self.mlp(self.layernorm(x_attn)) return x class SelfAttention(nn.Module): r""" Implements sequence packed attention and RoPe """ def __init__( self, embed_dim: int, num_heads: int, rope: Optional[nn.Module] = None, ): super(SelfAttention, self).__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.head_dim = embed_dim // num_heads assert ( self.head_dim * num_heads == self.embed_dim ), "embed_dim must be divisible by num_heads" # To make this compatibile with nn.MultiHeadAttention self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim)) self.in_proj_bias = Parameter(torch.empty(3 * embed_dim)) self.in_proj = nn.Linear(embed_dim, 3 * embed_dim, bias=True) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True) self.rope = rope self.scale = self.head_dim ** (-0.5) def init_tensors(self): xavier_uniform_(self.in_proj_weight) constant_(self.in_proj_bias, 0.0) constant_(self.out_proj.bias, 0.0) def del_muda(self): del self.in_proj_weight del self.in_proj_bias def migrate_weights(self): """ MUST be called *after* loading the state_dict. This copies the weights from the old Parameters to the new nn.Linear layer. """ # Use torch.no_grad() to ensure this is done without tracking gradients with torch.no_grad(): self.in_proj.weight.copy_(self.in_proj_weight) self.in_proj.bias.copy_(self.in_proj_bias) # del self.in_proj_weight # del self.in_proj_bias # print("Migration complete. Old parameters have been removed.") def forward(self, x, attn_mask=None, need_weights=False): batch, seq, embed_dim = x.shape #proj = F.linear(x, self.in_proj_weight, self.in_proj_bias) proj = self.in_proj(x) # reshape to 3, E and not E, 3 is deliberate for better memory coalescing and keeping same order as chunk() proj = ( proj.unflatten(-1, (3, embed_dim)) .unsqueeze(0) .transpose(0, -2) .squeeze(-2) .contiguous() ) q, k, v = proj[0], proj[1], proj[2] # Use "q_" so that we don't accidentally quit in pdb :) q = rearrange(q, "b s (h d) -> b h s d", h=self.num_heads) k = rearrange(k, "b s (h d) -> b h s d", h=self.num_heads) v = rearrange(v, "b s (h d) -> b h s d", h=self.num_heads) if self.rope: q, k = self.rope(q, k) if not need_weights: # Original efficient path attn = F.scaled_dot_product_attention( q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False, scale=self.scale ) attn = rearrange(attn, "b h s d -> b s (h d)") return self.out_proj(attn) else: # Path to get attention weights q_scaled = q * self.scale # attn_weights shape: (batch, num_heads, seq_len, seq_len) attn_weights = torch.matmul(q_scaled, k.transpose(-2, -1)) if attn_mask is not None: attn_weights += attn_mask attn_weights = F.softmax(attn_weights, dim=-1) attn_output = torch.matmul(attn_weights, v) attn_output = rearrange(attn_output, "b h s d -> b s (h d)") output = self.out_proj(attn_output) return output, attn_weights class ResidualAttentionBlock(nn.Module): def __init__( self, d_model: int, n_head: int, mlp_ratio: float = 4.0, ls_init_value: float = None, act_layer: Callable = nn.GELU, norm_layer: Callable = nn.LayerNorm, drop_path: float = 0.0, rope: Optional[nn.Module] = None, ): super().__init__() if rope: self.attn = SelfAttention(d_model, n_head, rope=rope) else: self.attn = nn.MultiheadAttention(d_model, n_head, batch_first=True) self.ls_1 = ( LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() ) self.ls_2 = ( LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() ) self.ln_1 = norm_layer(d_model) self.ln_2 = norm_layer(d_model) self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() mlp_width = int(d_model * mlp_ratio) self.mlp = nn.Sequential( OrderedDict( [ ("c_fc", nn.Linear(d_model, mlp_width)), ("gelu", act_layer()), ("c_proj", nn.Linear(mlp_width, d_model)), ] ) ) def _call_attn( self, q_x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None, need_weights: bool = False, ): if attn_mask is not None: if not attn_mask.dtype == torch.bool: attn_mask = attn_mask.to(q_x.dtype) if isinstance(self.attn, SelfAttention): # Pass the flag to your custom SelfAttention return self.attn(q_x, attn_mask=attn_mask, need_weights=need_weights) else: # Standard nn.MultiheadAttention return self.attn(q_x, q_x, q_x, attn_mask=attn_mask, need_weights=need_weights)[0] def forward( self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None, need_weights: bool = False, ): attn_result = self._call_attn(self.ln_1(x), attn_mask=attn_mask, need_weights=need_weights) attn_weights = None if need_weights: # Unpack the output and the weights attn_output, attn_weights = attn_result else: attn_output = attn_result x = x + self.drop_path1(self.ls_1(attn_output)) x = x + self.drop_path2(self.ls_2(self.mlp(self.ln_2(x)))) if need_weights: return x, attn_weights # Return weights return x def del_muda(self): self.attn.del_muda() class Transformer(nn.Module): def __init__( self, width: int, layers: int, heads: int, mlp_ratio: float = 4.0, ls_init_value: float = None, act_layer: Callable = nn.GELU, norm_layer: Callable = nn.LayerNorm, drop_path: float = 0.0, rope: Optional[nn.Module] = None, ): super().__init__() self.width = width self.layers = layers self.grad_checkpointing = False self.resblocks = nn.ModuleList( [ ResidualAttentionBlock( width, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer, drop_path=drop_path, rope=rope, ) for _ in range(layers) ] ) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def truncate(self, layer_idx: int): """ Delete layers so the last layer is the given layer index. """ self.layers = ((self.layers + layer_idx) % self.layers) + 1 self.resblocks = nn.ModuleList(self.resblocks[:self.layers]) def del_muda(self): for resblock in self.resblocks: resblock.del_muda() def forward( self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None, layer_idx: int = -1, need_weights: bool = False, # Add need_weights flag ): stop_idx = (self.layers + layer_idx) % self.layers attention_maps = [] # List to store maps from each layer for i, r in enumerate(self.resblocks): if self.grad_checkpointing and not torch.jit.is_scripting(): if need_weights: raise ValueError("Cannot get attention maps with gradient checkpointing enabled.") x = checkpoint(r, x, attn_mask, use_reentrant=False) else: if need_weights: x, attn_map = r(x, attn_mask=attn_mask, need_weights=True) attention_maps.append(attn_map) else: x = r(x, attn_mask=attn_mask, need_weights=False) if i == stop_idx: break if need_weights: return x, attention_maps # Return the list of maps return x class VisionTransformer(nn.Module): def __init__( self, patch_size: int, width: int, layers: int, heads: int, mlp_ratio: float, act_layer: Callable = nn.GELU, norm_layer: Callable = partial(nn.LayerNorm, eps=1e-5), use_ln_pre: bool = True, use_ln_post: bool = True, ls_init_value: float = None, drop_path: float = 0.0, image_size: int = 448, # Pretrain image size only; you can pass in any image size use_abs_posemb: bool = True, use_rope2d: bool = True, use_cls_token: bool = False, output_dim: Optional[int] = 1280, attn_pooler_heads: int = 8, pool_type: Literal["attn", "tok", "avg", "none"] = "attn", ): super().__init__() assert pool_type in ("attn", "tok", "avg", "none") self.pool_type = pool_type self.patch_size = patch_size self.output_dim = output_dim or width self.proj_dim = output_dim self.heads = heads self.width = width self.layers = layers self.use_abs_posemb = use_abs_posemb self.use_cls_token = use_cls_token self.use_rope2d = use_rope2d self.image_size = image_size self.conv1 = nn.Conv2d( in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False, ) self.rope = ( Rope2D( dim=width // heads, use_cls_token=self.use_cls_token, ) if self.use_rope2d else None ) self.ln_pre = norm_layer(width) if use_ln_pre else nn.Identity() self.ln_post = norm_layer(self.width) if use_ln_post else nn.Identity() self.transformer = Transformer( width, layers, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer, drop_path=drop_path, rope=self.rope, ) if pool_type == "attn": self.attn_pool = AttentionPooling( embed_dim=width, num_heads=attn_pooler_heads, act_layer=act_layer, norm_layer=norm_layer, ) else: self.attn_pool = None self.init_tensors() def del_muda(self): self.transformer.del_muda() def delete_attn_pool(self): del self.attn_pool def init_tensors(self): def init_submodule_tensors(module): for name, child in module.named_children(): if hasattr(child, "init_tensors"): logger.debug(f"Initializing tensors for submodule: {name}") child.init_tensors() init_submodule_tensors(child) init_submodule_tensors(self) self.rope.init_tensors() # class embeddings and positional embeddings init_scale = self.width**-0.5 if self.use_cls_token: self.class_embedding = nn.Parameter(init_scale * torch.randn(self.width)) if self.use_abs_posemb: self.posemb_grid_size = self.image_size // self.patch_size self.positional_embedding = nn.Parameter( init_scale * torch.randn( int(self.use_cls_token) + self.posemb_grid_size**2, self.width ) ) if self.proj_dim is not None: self.proj = nn.Parameter( init_scale * torch.randn(self.width, self.proj_dim) ) def load_ckpt(self, ckpt_path: str, verbose: bool = True): _sd = torch.load(ckpt_path, weights_only=True) if "state_dict" in _sd: _sd = _sd["state_dict"] elif "weights" in _sd: _sd = _sd["weights"] # for backwards compatibility _sd = {k.replace("module.", ""): v for k, v in _sd.items()} if any(k.startswith("visual.") for k in _sd): _sd = {k.replace("visual.", ""): v for k, v in _sd.items() if "visual" in k} m, u = self.load_state_dict(_sd, strict=False) if verbose or (m or u): logger.info(f"Missing keys for loading vision encoder: {m}") logger.info(f"Unexpected keys for loading vision encoder: {u}") print(f"Missing keys for loading vision encoder: {m}") print(f"Unexpected keys for loading vision encoder: {u}") def truncate(self, layer_idx: int): """ Delete layers so the last layer is the given layer index. """ self.transformer.truncate(layer_idx) self.layers = self.transformer.layers @classmethod def from_config( cls, name: str, pretrained: bool = False, checkpoint_path: Optional[str] = None, **kwdargs ): if name not in PE_VISION_CONFIG: raise RuntimeError(f"{name} not found in configs.") args = asdict(PE_VISION_CONFIG[name]) args.update(kwdargs) model = cls(**args) if pretrained: model.load_ckpt(fetch_pe_checkpoint(name, checkpoint_path)) return model @classmethod def available_configs(cls): return list(PE_VISION_CONFIG.keys()) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.transformer.set_grad_checkpointing(enable=enable) def _sample_abs_posemb(self, grid_h: int, grid_w: int): """Interpolates the absolute position embedding if necessary.""" if self.posemb_grid_size == grid_h and self.posemb_grid_size == grid_w: return self.positional_embedding[None, ...] pos_embed = self.positional_embedding if self.use_cls_token: cls_token_embed, pos_embed = pos_embed[:1], pos_embed[1:] pos_embed = ( pos_embed.reshape(1, self.posemb_grid_size, self.posemb_grid_size, -1) .permute(0, 3, 1, 2) .contiguous() ) pos_embed = F.interpolate( pos_embed, size=(grid_h, grid_w), mode="bilinear", align_corners=False ) pos_embed = pos_embed.permute(0, 2, 3, 1).reshape(-1, self.width).contiguous() if self.use_cls_token: pos_embed = torch.cat([cls_token_embed, pos_embed], dim=0) return pos_embed[None, ...] def _pool(self, x: torch.Tensor): if self.pool_type == "tok": return x[:, 0] elif self.pool_type == "avg": return x.mean(dim=1) elif self.pool_type == "attn": return self.attn_pool(x).squeeze(1) elif self.pool_type == "none": return x else: raise NotImplementedError def forward_features( self, x: torch.Tensor, norm: bool = False, layer_idx: int = -1, strip_cls_token: bool = False, need_weights: bool = False, # Add need_weights flag ): batch, _, h, w = x.shape grid_h, grid_w = h // self.patch_size, w // self.patch_size x = self.conv1(x) x = x.permute(0, 2, 3, 1).reshape(batch, -1, self.width) if self.use_cls_token: x = torch.cat( [self.class_embedding.view(1, 1, -1).expand(batch, -1, -1), x], dim=1, ) if self.use_abs_posemb: x = x + self._sample_abs_posemb(grid_h, grid_w) if self.use_rope2d: self.rope.update_grid(x.device, grid_h, grid_w) x = self.ln_pre(x) # Get output from the transformer transformer_output = self.transformer(x, layer_idx=layer_idx, need_weights=need_weights) attention_maps = None if need_weights: x, attention_maps = transformer_output else: x = transformer_output if norm: x = self.ln_post(x) if strip_cls_token and self.use_cls_token: x = x[:, 1:, :] if need_weights: return x, attention_maps # Return maps return x def forward(self, x: torch.Tensor, **kwargs): x = self.forward_features(x, norm=True, **kwargs) x = self._pool(x) if self.proj_dim is not None: x = x @ self.proj return x class TextTransformer(nn.Module): def __init__( self, context_length: int = 72, vocab_size: int = 49408, width: int = 512, heads: int = 8, layers: int = 12, mlp_ratio: float = 4.0, ls_init_value: float = None, output_dim: int = 1280, no_causal_mask: bool = False, pad_id: int = 0, pool_type: str = "argmax", proj_bias: bool = False, act_layer: Callable = nn.GELU, norm_layer: Callable = partial(nn.LayerNorm, eps=1e-5), output_tokens: bool = False, use_ln_post: bool = True, ): super().__init__() assert pool_type in ("first", "last", "argmax", "none") self.pool_type = pool_type self.output_tokens = output_tokens self.num_pos = self.context_length = context_length self.vocab_size = vocab_size self.width = width self.output_dim = output_dim self.heads = heads self.pad_id = pad_id self.layers = layers self.token_embedding = nn.Embedding(vocab_size, width) self.positional_embedding = nn.Parameter(torch.empty(self.num_pos, width)) self.transformer = Transformer( width=width, layers=layers, heads=heads, mlp_ratio=mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer, ) self.ln_final = norm_layer(width) if use_ln_post else nn.Identity() if no_causal_mask: self.attn_mask = None else: self.register_buffer( "attn_mask", self.build_causal_mask(), persistent=False ) if pool_type == "attn" or pool_type == "attn_eos": self.attn_pool = AttentionPooling( embed_dim=width, num_heads=heads, act_layer=act_layer, norm_layer=norm_layer, ) else: # argmax self.attn_pool = None if proj_bias: self.text_projection = nn.Linear(width, output_dim) else: self.text_projection = nn.Parameter(torch.empty(width, output_dim)) def build_causal_mask(self): # lazily create causal attention mask, with full attention between the tokens # pytorch uses additive attention mask; fill with -inf mask = torch.empty(self.num_pos, self.num_pos) mask.fill_(float("-inf")) mask.triu_(1) # zero out the lower diagonal return mask def load_ckpt(self, ckpt_path: str, verbose: bool = True): _sd = torch.load(ckpt_path, weights_only=True) if "state_dict" in _sd: _sd = _sd["state_dict"] elif "weights" in _sd: _sd = _sd["weights"] _sd = {k.replace("module.", ""): v for k, v in _sd.items()} m, u = self.load_state_dict(_sd, strict=False) if verbose or (m or u): logger.info(f"Missing keys for loading model: {m}") logger.info(f"Unexpected keys for loading model: {u}") print(f"Missing keys for loading model: {m}") print(f"Unexpected keys for loading model: {u}") def build_cls_mask(self, text): cls_mask = (text != self.pad_id).unsqueeze(1) cls_mask = F.pad(cls_mask, (1, 0, cls_mask.shape[2], 0), value=True) additive_mask = torch.empty(cls_mask.shape, device=cls_mask.device) additive_mask.fill_(0) additive_mask.masked_fill_(~cls_mask, float("-inf")) additive_mask = torch.repeat_interleave(additive_mask, self.heads, 0) return additive_mask def text_global_pool( self, x, text: Optional[torch.Tensor] = None, pool_type: str = "argmax" ): if pool_type == "first": pooled, tokens = x[:, 0], x[:, 1:] elif pool_type == "last": pooled, tokens = x[:, -1], x[:, :-1] elif pool_type == "argmax": # take features from the eot embedding (eot_token is the highest number in each sequence) assert text is not None pooled, tokens = x[torch.arange(x.shape[0]), text.argmax(dim=-1)], x else: pooled = tokens = x return pooled, tokens def forward(self, text): seq_len = text.shape[1] x = self.token_embedding( text ) attn_mask = self.attn_mask if attn_mask is not None: attn_mask = attn_mask[:seq_len, :seq_len] x = x + self.positional_embedding[:seq_len] x = self.transformer(x, attn_mask=attn_mask) x = self.ln_final(x) pooled, tokens = self.text_global_pool(x, text, pool_type=self.pool_type) if self.text_projection is not None: if isinstance(self.text_projection, nn.Linear): pooled = self.text_projection(pooled) else: pooled = pooled @ self.text_projection if self.output_tokens: return pooled, tokens return pooled class CLIP(TextTransformer): def __init__( self, vision_cfg: PEConfig, text_cfg: PETextConfig, init_logit_scale: float = np.log(1 / 0.07) ): super(CLIP, self).__init__(**asdict(text_cfg)) self.visual = VisionTransformer(**asdict(vision_cfg)) self.image_size = self.visual.image_size # For ease of use self.logit_scale = nn.Parameter(torch.ones([]) * init_logit_scale) def encode_image(self, image, normalize: bool = False): x = self.visual(image) return F.normalize(x, dim=-1) if normalize else x def encode_video(self, video, normalize: bool = False): # b n c h w b, n, c, h, w = video.shape frms = video.reshape(b * n, c, h, w) frm_feats = self.encode_image(frms, normalize=normalize) video_feats = frm_feats.reshape(b, n, -1) video_feats = video_feats.mean(dim=1) return video_feats def encode_text(self, text, normalize: bool = False): x = super().forward(text) return F.normalize(x, dim=-1) if normalize else x def forward( self, image: Optional[torch.Tensor] = None, text: Optional[torch.Tensor] = None, ): image_features = ( self.encode_image(image, normalize=True) if image is not None else None ) text_features = ( self.encode_text(text, normalize=True) if text is not None else None ) return image_features, text_features, self.logit_scale.exp() @classmethod def from_config( cls, name: str, pretrained: bool = False, checkpoint_path: Optional[str] = None # To load your own ): if name not in PE_VISION_CONFIG or name not in PE_TEXT_CONFIG: raise RuntimeError(f"{name} not found in configs.") model = cls(PE_VISION_CONFIG[name], PE_TEXT_CONFIG[name]) if pretrained: model.load_ckpt(fetch_pe_checkpoint(name, checkpoint_path)) return model @classmethod def available_configs(cls): return [k for k in PE_VISION_CONFIG if k in PE_TEXT_CONFIG]