Spaces:
Runtime error
Runtime error
| extern "C" { | |
| // Scheduling priorities | |
| enum ggml_sched_priority { | |
| GGML_SCHED_PRIO_NORMAL, | |
| GGML_SCHED_PRIO_MEDIUM, | |
| GGML_SCHED_PRIO_HIGH, | |
| GGML_SCHED_PRIO_REALTIME | |
| }; | |
| // Threadpool params | |
| // Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults | |
| struct ggml_threadpool_params { | |
| bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings) | |
| int n_threads; // number of threads | |
| enum ggml_sched_priority prio; // thread priority | |
| uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling) | |
| bool strict_cpu; // strict cpu placement | |
| bool paused; // start in paused state | |
| }; | |
| struct ggml_threadpool; // forward declaration, see ggml.c | |
| typedef struct ggml_threadpool * ggml_threadpool_t; | |
| // the compute plan that needs to be prepared for ggml_graph_compute() | |
| // since https://github.com/ggerganov/ggml/issues/287 | |
| struct ggml_cplan { | |
| size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()` | |
| uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()` | |
| int n_threads; | |
| struct ggml_threadpool * threadpool; | |
| // abort ggml_graph_compute when true | |
| ggml_abort_callback abort_callback; | |
| void * abort_callback_data; | |
| }; | |
| // numa strategies | |
| enum ggml_numa_strategy { | |
| GGML_NUMA_STRATEGY_DISABLED = 0, | |
| GGML_NUMA_STRATEGY_DISTRIBUTE = 1, | |
| GGML_NUMA_STRATEGY_ISOLATE = 2, | |
| GGML_NUMA_STRATEGY_NUMACTL = 3, | |
| GGML_NUMA_STRATEGY_MIRROR = 4, | |
| GGML_NUMA_STRATEGY_COUNT | |
| }; | |
| GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems | |
| GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node | |
| GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value); | |
| GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value); | |
| GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value); | |
| GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value); | |
| GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i); | |
| GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value); | |
| GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3); | |
| GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value); | |
| GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i); | |
| GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value); | |
| GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3); | |
| GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value); | |
| GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads); | |
| GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads); | |
| GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1); | |
| GGML_API struct ggml_threadpool * ggml_threadpool_new (struct ggml_threadpool_params * params); | |
| GGML_API void ggml_threadpool_free (struct ggml_threadpool * threadpool); | |
| GGML_API int ggml_threadpool_get_n_threads(struct ggml_threadpool * threadpool); | |
| GGML_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool); | |
| GGML_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool); | |
| // ggml_graph_plan() has to be called before ggml_graph_compute() | |
| // when plan.work_size > 0, caller must allocate memory for plan.work_data | |
| GGML_API struct ggml_cplan ggml_graph_plan( | |
| const struct ggml_cgraph * cgraph, | |
| int n_threads, /* = GGML_DEFAULT_N_THREADS */ | |
| struct ggml_threadpool * threadpool /* = NULL */ ); | |
| GGML_API enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan); | |
| // same as ggml_graph_compute() but the work data is allocated as a part of the context | |
| // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data | |
| GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads); | |
| // TODO: move to backend interface | |
| GGML_API int ggml_cpu_has_neon (void); | |
| GGML_API int ggml_cpu_has_sve (void); | |
| GGML_API int ggml_cpu_has_matmul_int8(void); | |
| // get the sve vector length in bytes | |
| GGML_API int ggml_cpu_get_sve_cnt(void); | |
| // Internal types and functions exposed for tests and benchmarks | |
| typedef void (*ggml_from_float_to_mat_t) | |
| (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nr, int64_t k, int64_t bs); | |
| typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx, | |
| const void * GGML_RESTRICT y, size_t by, int nrc); | |
| typedef void (*ggml_gemv_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, | |
| const void * GGML_RESTRICT y, int nr, int nc); | |
| typedef void (*ggml_gemm_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, | |
| const void * GGML_RESTRICT y, int nr, int nc); | |
| struct ggml_type_traits_cpu { | |
| ggml_from_float_to_mat_t from_float_to_mat; | |
| ggml_vec_dot_t vec_dot; | |
| enum ggml_type vec_dot_type; | |
| int64_t nrows; // number of rows to process simultaneously | |
| int64_t ncols; // number of columns to process simultaneously | |
| ggml_gemv_t gemv; | |
| ggml_gemm_t gemm; | |
| }; | |
| GGML_API const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type); | |
| GGML_API void ggml_cpu_init(void); | |
| // | |
| // CPU backend | |
| // | |
| GGML_API ggml_backend_t ggml_backend_cpu_init(void); | |
| GGML_API bool ggml_backend_is_cpu (ggml_backend_t backend); | |
| GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads); | |
| GGML_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool); | |
| GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data); | |
| GGML_API ggml_backend_reg_t ggml_backend_cpu_reg(void); | |
| GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void); | |
| } | |