Spaces:
Running
Running
File size: 30,386 Bytes
e5d943e f81eabd e5d943e f81eabd e5d943e f81eabd e5d943e f81eabd e5d943e cff9585 e5d943e f81eabd e5d943e f81eabd e5d943e f81eabd e5d943e f81eabd e5d943e f81eabd e5d943e f81eabd e5d943e f81eabd e5d943e f81eabd e5d943e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 |
/**
* πΏ Ivy's GPU Art Studio
* Tab 3: Particle Art
*
* GPU-computed particle systems with various behaviors
*/
class ParticlesRenderer {
constructor() {
this.device = null;
this.context = null;
this.format = null;
// Particle parameters
this.params = {
count: 10000,
mode: 0, // 0=attract, 1=repel, 2=orbit, 3=swarm, 4=ivy
size: 2.0,
speed: 1.0,
palette: 0, // 0=ivy, 1=rainbow, 2=fire, 3=ocean, 4=neon, 5=gold
trail: 0.1 // 0=no trail, higher=more trail
};
this.maxParticles = 100000;
this.input = null;
this.animationLoop = null;
this.isActive = false;
this.time = 0;
}
async init(device, context, format, canvas) {
this.device = device;
this.context = context;
this.format = format;
this.canvas = canvas;
await this.createBuffers();
await this.createPipelines();
this.input = new WebGPUUtils.InputHandler(canvas);
this.animationLoop = new WebGPUUtils.AnimationLoop((dt, time) => {
this.time = time;
this.simulate(dt);
this.render();
});
}
async createBuffers() {
// Particle positions (vec2) and velocities (vec2) = 16 bytes per particle
this.particleBuffer = this.device.createBuffer({
label: "Particle Buffer",
size: this.maxParticles * 16,
usage: GPUBufferUsage.STORAGE | GPUBufferUsage.VERTEX | GPUBufferUsage.COPY_DST
});
// Uniform buffer
this.uniformBuffer = this.device.createBuffer({
label: "Particle Uniforms",
size: 64,
usage: GPUBufferUsage.UNIFORM | GPUBufferUsage.COPY_DST
});
// Initialize particles
this.respawnParticles();
}
respawnParticles() {
const data = new Float32Array(this.maxParticles * 4);
for (let i = 0; i < this.maxParticles; i++) {
const offset = i * 4;
// Random position
data[offset] = Math.random() * 2 - 1; // x
data[offset + 1] = Math.random() * 2 - 1; // y
// Random velocity
const angle = Math.random() * Math.PI * 2;
const speed = Math.random() * 0.01;
data[offset + 2] = Math.cos(angle) * speed; // vx
data[offset + 3] = Math.sin(angle) * speed; // vy
}
this.device.queue.writeBuffer(this.particleBuffer, 0, data);
}
async createPipelines() {
// Compute shader
const computeShader = this.device.createShaderModule({
label: "Particle Compute Shader",
code: this.getComputeShaderCode()
});
// Render shader
const renderShader = this.device.createShaderModule({
label: "Particle Render Shader",
code: this.getRenderShaderCode()
});
// Bind group layout for compute
this.computeBindGroupLayout = this.device.createBindGroupLayout({
entries: [
{ binding: 0, visibility: GPUShaderStage.COMPUTE, buffer: { type: "uniform" } },
{ binding: 1, visibility: GPUShaderStage.COMPUTE, buffer: { type: "storage" } }
]
});
// Bind group layout for render
this.renderBindGroupLayout = this.device.createBindGroupLayout({
entries: [
{ binding: 0, visibility: GPUShaderStage.VERTEX | GPUShaderStage.FRAGMENT, buffer: { type: "uniform" } }
]
});
// Compute pipeline
this.computePipeline = this.device.createComputePipeline({
label: "Particle Compute Pipeline",
layout: this.device.createPipelineLayout({
bindGroupLayouts: [this.computeBindGroupLayout]
}),
compute: {
module: computeShader,
entryPoint: "main"
}
});
// Render pipeline
this.renderPipeline = this.device.createRenderPipeline({
label: "Particle Render Pipeline",
layout: this.device.createPipelineLayout({
bindGroupLayouts: [this.renderBindGroupLayout]
}),
vertex: {
module: renderShader,
entryPoint: "vertexMain",
buffers: [
{
arrayStride: 16, // vec4f (pos.xy, vel.xy)
stepMode: "instance",
attributes: [
{ shaderLocation: 0, offset: 0, format: "float32x2" }, // position
{ shaderLocation: 1, offset: 8, format: "float32x2" } // velocity
]
}
]
},
fragment: {
module: renderShader,
entryPoint: "fragmentMain",
targets: [
{
format: this.format,
blend: {
color: {
srcFactor: "src-alpha",
dstFactor: "one",
operation: "add"
},
alpha: {
srcFactor: "one",
dstFactor: "one",
operation: "add"
}
}
}
]
},
primitive: {
topology: "triangle-list"
}
});
// Create bind groups
this.computeBindGroup = this.device.createBindGroup({
layout: this.computeBindGroupLayout,
entries: [
{ binding: 0, resource: { buffer: this.uniformBuffer } },
{ binding: 1, resource: { buffer: this.particleBuffer } }
]
});
this.renderBindGroup = this.device.createBindGroup({
layout: this.renderBindGroupLayout,
entries: [{ binding: 0, resource: { buffer: this.uniformBuffer } }]
});
}
start() {
this.isActive = true;
this.animationLoop.start();
}
stop() {
this.isActive = false;
this.animationLoop.stop();
}
reset() {
this.respawnParticles();
}
setCount(count) {
this.params.count = Math.min(count, this.maxParticles);
}
setMode(mode) {
const modes = {
attract: 0,
repel: 1,
orbit: 2,
swarm: 3,
ivy: 4,
tunnel: 5, // Wormhole tunnel
dna: 6, // DNA helix sparkle
galaxy: 7, // Galaxy vortex
wavegrid: 8, // NEW: Wave grid (image 2)
splatter: 9 // NEW: Paint splatter clusters (image 3)
};
this.params.mode = modes[mode] || 0;
// Respawn particles for special modes
if (mode === "tunnel" || mode === "dna" || mode === "galaxy") {
this.respawnParticles3D();
} else if (mode === "wavegrid") {
this.respawnParticlesGrid();
} else if (mode === "splatter") {
this.respawnParticlesClusters();
}
}
// Grid spawn for wave effect
respawnParticlesGrid() {
const data = new Float32Array(this.maxParticles * 4);
const gridSize = Math.floor(Math.sqrt(this.maxParticles));
for (let i = 0; i < this.maxParticles; i++) {
const offset = i * 4;
const gx = (i % gridSize) / gridSize;
const gy = Math.floor(i / gridSize) / gridSize;
// Grid position (-1 to 1)
data[offset] = gx * 2 - 1; // x
data[offset + 1] = gy * 2 - 1; // y
data[offset + 2] = gx; // store grid coord for coloring
data[offset + 3] = gy;
}
this.device.queue.writeBuffer(this.particleBuffer, 0, data);
}
// Cluster spawn for paint splatter effect
respawnParticlesClusters() {
const data = new Float32Array(this.maxParticles * 4);
const numClusters = 30 + Math.floor(Math.random() * 20);
const clusters = [];
// Create cluster centers with random colors
for (let c = 0; c < numClusters; c++) {
clusters.push({
x: Math.random() * 2 - 1,
y: Math.random() * 2 - 1,
size: 0.1 + Math.random() * 0.25,
hue: Math.random() // Color identifier
});
}
for (let i = 0; i < this.maxParticles; i++) {
const offset = i * 4;
// Pick a random cluster
const cluster = clusters[Math.floor(Math.random() * numClusters)];
// Spawn within cluster with gaussian-like distribution
const angle = Math.random() * Math.PI * 2;
const dist = Math.random() * Math.random() * cluster.size; // Squared for density at center
data[offset] = cluster.x + Math.cos(angle) * dist; // x
data[offset + 1] = cluster.y + Math.sin(angle) * dist; // y
data[offset + 2] = cluster.hue; // store hue for color
data[offset + 3] = dist / cluster.size; // distance from center for variation
}
this.device.queue.writeBuffer(this.particleBuffer, 0, data);
}
// Special respawn for 3D-like effects
respawnParticles3D() {
const data = new Float32Array(this.maxParticles * 4);
for (let i = 0; i < this.maxParticles; i++) {
const offset = i * 4;
// Spawn in a cylinder/tube shape for better 3D effect
const angle = Math.random() * Math.PI * 2;
const radius = 0.3 + Math.random() * 0.7;
const z = Math.random() * 2 - 1; // Pseudo-depth
data[offset] = Math.cos(angle) * radius; // x
data[offset + 1] = Math.sin(angle) * radius; // y
data[offset + 2] = z * 0.01; // vx (store z as velocity for shader)
data[offset + 3] = (Math.random() - 0.5) * 0.01; // vy
}
this.device.queue.writeBuffer(this.particleBuffer, 0, data);
}
setSize(size) {
this.params.size = size;
}
setSpeed(speed) {
this.params.speed = speed;
}
setPalette(palette) {
const palettes = { ivy: 0, rainbow: 1, fire: 2, ocean: 3, neon: 4, gold: 5, cosmic: 6 };
this.params.palette = palettes[palette] ?? 0;
}
setTrail(trail) {
this.params.trail = trail;
}
simulate(dt) {
if (!this.isActive) return;
const aspect = this.canvas.width / this.canvas.height;
// Update uniforms
const uniforms = new Float32Array([
this.params.count,
dt * this.params.speed,
this.params.mode,
this.params.size,
this.input.mouseX * 2 - 1, // Normalized to -1..1
this.input.mouseY * 2 - 1,
this.input.isPressed ? 1.0 : 0.0,
this.time,
aspect,
this.params.palette,
this.params.trail,
0.0 // padding
]);
this.device.queue.writeBuffer(this.uniformBuffer, 0, uniforms);
// Run compute shader
const commandEncoder = this.device.createCommandEncoder();
const computePass = commandEncoder.beginComputePass();
computePass.setPipeline(this.computePipeline);
computePass.setBindGroup(0, this.computeBindGroup);
computePass.dispatchWorkgroups(Math.ceil(this.params.count / 64));
computePass.end();
this.device.queue.submit([commandEncoder.finish()]);
}
render() {
if (!this.isActive) return;
WebGPUUtils.resizeCanvasToDisplaySize(this.canvas, window.devicePixelRatio);
// Trail effect: use semi-transparent clear based on trail value
// Lower alpha = more trail persistence
// Clamped to prevent values below 0.05 which would cause issues
const trailAlpha = Math.max(0.05, 1.0 - this.params.trail * 1.9); // Better trail range
const commandEncoder = this.device.createCommandEncoder();
const renderPass = commandEncoder.beginRenderPass({
colorAttachments: [
{
view: this.context.getCurrentTexture().createView(),
clearValue: { r: 0.02 * trailAlpha, g: 0.02 * trailAlpha, b: 0.05 * trailAlpha, a: trailAlpha },
loadOp: "clear",
storeOp: "store"
}
]
});
renderPass.setPipeline(this.renderPipeline);
renderPass.setBindGroup(0, this.renderBindGroup);
renderPass.setVertexBuffer(0, this.particleBuffer);
renderPass.draw(6, this.params.count); // 6 vertices per quad, instanced
renderPass.end();
this.device.queue.submit([commandEncoder.finish()]);
}
getComputeShaderCode() {
return /* wgsl */ `
struct Uniforms {
count: f32,
dt: f32,
mode: f32,
size: f32,
mouseX: f32,
mouseY: f32,
mousePressed: f32,
time: f32,
aspect: f32,
palette: f32,
trail: f32,
}
struct Particle {
pos: vec2f,
vel: vec2f,
}
@group(0) @binding(0) var<uniform> u: Uniforms;
@group(0) @binding(1) var<storage, read_write> particles: array<Particle>;
// Simple hash function for randomness
fn hash(p: vec2f) -> f32 {
var h = dot(p, vec2f(127.1, 311.7));
return fract(sin(h) * 43758.5453123);
}
@compute @workgroup_size(64)
fn main(@builtin(global_invocation_id) gid: vec3u) {
let idx = gid.x;
if (idx >= u32(u.count)) {
return;
}
var p = particles[idx];
let mouse = vec2f(u.mouseX, u.mouseY);
// Calculate force based on mode
var force = vec2f(0.0, 0.0);
let toMouse = mouse - p.pos;
let dist = length(toMouse);
let dir = normalize(toMouse + vec2f(0.0001, 0.0001));
let mode = i32(u.mode);
if (mode == 0) {
// Attract to mouse
if (u.mousePressed > 0.5 && dist > 0.01) {
force = dir * 0.5 / (dist * dist + 0.1);
}
} else if (mode == 1) {
// Repel from mouse
if (u.mousePressed > 0.5 && dist > 0.01) {
force = -dir * 0.5 / (dist * dist + 0.1);
}
} else if (mode == 2) {
// Orbit around mouse
if (dist > 0.01) {
let perpendicular = vec2f(-dir.y, dir.x);
force = perpendicular * 0.2 / (dist + 0.1);
force += dir * (0.5 - dist) * 0.1; // Pull toward orbit radius
}
} else if (mode == 3) {
// Swarm behavior
let noise = hash(p.pos + vec2f(u.time * 0.1, 0.0));
let angle = noise * 6.28318 + u.time;
force = vec2f(cos(angle), sin(angle)) * 0.05;
if (u.mousePressed > 0.5 && dist < 0.3) {
force += dir * 0.3;
}
} else if (mode == 4) {
// πΏ Ivy mode - Falling leaves that grow/spiral like ivy
let noise = hash(p.pos + vec2f(f32(idx) * 0.01, 0.0));
// Gentle falling
force.y = -0.02;
// Swaying left-right like leaves in wind
let swayFreq = noise * 2.0 + 1.0;
let swayAmp = 0.03 + noise * 0.02;
force.x = sin(u.time * swayFreq + p.pos.y * 3.0 + noise * 6.28) * swayAmp;
// Spiral pattern (like ivy growing)
let spiralAngle = u.time * 0.5 + p.pos.y * 5.0 + noise * 6.28;
force.x += cos(spiralAngle) * 0.01;
// Mouse interaction - leaves follow cursor
if (u.mousePressed > 0.5) {
force += dir * 0.2 / (dist + 0.2);
} else if (dist < 0.3) {
// Gentle attract even without click
force += dir * 0.05 / (dist + 0.1);
}
} else if (mode == 5) {
// π WORMHOLE TUNNEL - Particles fly toward center creating tunnel effect
let noise = hash(p.pos + vec2f(f32(idx) * 0.01, 0.0));
// Distance from center
let centerDist = length(p.pos);
// Spiral inward
let angle = atan2(p.pos.y, p.pos.x);
let spiralSpeed = 0.1 + noise * 0.1;
let newAngle = angle + u.time * spiralSpeed;
// Pull toward center (tunnel effect)
let pullStrength = 0.05 * (1.0 + centerDist);
force = -normalize(p.pos + vec2f(0.001)) * pullStrength;
// Add rotation
let tangent = vec2f(-p.pos.y, p.pos.x);
force += normalize(tangent) * 0.1;
// When very close to center, respawn at edge
if (centerDist < 0.05) {
let spawnAngle = noise * 6.28318 + u.time;
p.pos = vec2f(cos(spawnAngle), sin(spawnAngle)) * (0.9 + noise * 0.2);
p.vel = vec2f(0.0);
}
} else if (mode == 6) {
// 𧬠DNA HELIX - Double helix sparkle spiral
let noise = hash(p.pos + vec2f(f32(idx) * 0.01, 0.0));
let particlePhase = f32(idx) / u.count;
// Two helices (DNA strands)
let strand = select(0.0, 3.14159, f32(idx % 2u) > 0.5);
let helixAngle = particlePhase * 20.0 + u.time * 2.0 + strand;
let helixRadius = 0.3 + 0.1 * sin(particlePhase * 10.0);
// Target position on helix
let targetX = cos(helixAngle) * helixRadius;
let targetY = (particlePhase * 2.0 - 1.0); // Vertical spread
let destPos = vec2f(targetX, targetY);
// Move toward helix position
force = (destPos - p.pos) * 0.1;
// Add sparkle jitter
force.x += sin(u.time * 10.0 + noise * 100.0) * 0.01;
force.y += cos(u.time * 8.0 + noise * 50.0) * 0.01;
// Mouse interaction - expand helix
if (u.mousePressed > 0.5) {
let expand = dir * 0.1;
force += expand;
}
} else if (mode == 7) {
// π GALAXY VORTEX - Spiral galaxy with arms
let noise = hash(p.pos + vec2f(f32(idx) * 0.01, 0.0));
let particlePhase = f32(idx) / u.count;
// Galaxy arm assignment (4 arms)
let armIndex = f32(idx % 4u);
let armOffset = armIndex * 1.5708; // PI/2
// Spiral formula
let spiralAngle = particlePhase * 15.0 + u.time * 0.5 + armOffset;
let spiralRadius = particlePhase * 0.8 + 0.1;
// Add arm spread
let spread = noise * 0.15;
let targetX = cos(spiralAngle) * (spiralRadius + spread);
let targetY = sin(spiralAngle) * (spiralRadius + spread);
let destPos = vec2f(targetX, targetY);
// Smooth movement toward spiral position
force = (destPos - p.pos) * 0.05;
// Orbital velocity (rotation)
let tangent = vec2f(-p.pos.y, p.pos.x);
force += normalize(tangent + vec2f(0.001)) * 0.02;
// Mouse creates gravity well
if (u.mousePressed > 0.5 && dist < 0.5) {
force += dir * 0.3 / (dist + 0.1);
}
} else if (mode == 8) {
// π WAVE GRID - Particles on grid with color waves passing through
// Grid particles don't move much - the color does the work
// Just subtle oscillation
let gridX = p.vel.x; // We stored grid coords in vel
let gridY = p.vel.y;
// Subtle wave movement
let waveX = sin(gridY * 10.0 + u.time * 2.0) * 0.005;
let waveY = cos(gridX * 10.0 + u.time * 1.5) * 0.005;
// Restore to grid position with wave offset
let targetX = (gridX * 2.0 - 1.0) + waveX;
let targetY = (gridY * 2.0 - 1.0) + waveY;
force = (vec2f(targetX, targetY) - p.pos) * 0.5;
// Mouse interaction - push particles away
if (dist < 0.2) {
force -= dir * 0.05 / (dist + 0.05);
}
} else if (mode == 9) {
// π¨ PAINT SPLATTER - Clustered particles, minimal movement
// The beauty is in the static clusters, so minimal force
let noise = hash(p.pos + vec2f(f32(idx) * 0.01, u.time * 0.01));
// Very subtle jitter to keep them alive
force.x = sin(u.time * 3.0 + noise * 100.0) * 0.002;
force.y = cos(u.time * 2.5 + noise * 50.0) * 0.002;
// Mouse click explodes nearby clusters
if (u.mousePressed > 0.5 && dist < 0.3) {
force -= dir * 0.2 / (dist + 0.05);
}
}
// Apply force
p.vel += force * u.dt;
// Damping
p.vel *= 0.99;
// Limit speed
let speed = length(p.vel);
if (speed > 0.1) {
p.vel = normalize(p.vel) * 0.1;
}
// Update position
p.pos += p.vel * u.dt * 10.0;
// Wrap around edges
if (p.pos.x < -1.1) { p.pos.x = 1.1; }
if (p.pos.x > 1.1) { p.pos.x = -1.1; }
if (p.pos.y < -1.1) { p.pos.y = 1.1; }
if (p.pos.y > 1.1) { p.pos.y = -1.1; }
particles[idx] = p;
}
`;
}
getRenderShaderCode() {
return /* wgsl */ `
struct Uniforms {
count: f32,
dt: f32,
mode: f32,
size: f32,
mouseX: f32,
mouseY: f32,
mousePressed: f32,
time: f32,
aspect: f32,
palette: f32,
trail: f32,
}
@group(0) @binding(0) var<uniform> u: Uniforms;
struct VertexInput {
@builtin(vertex_index) vertexIndex: u32,
@builtin(instance_index) instanceIndex: u32,
@location(0) pos: vec2f,
@location(1) vel: vec2f,
}
struct VertexOutput {
@builtin(position) position: vec4f,
@location(0) uv: vec2f,
@location(1) speed: f32,
@location(2) vel: vec2f,
}
fn getPaletteColor(t: f32, paletteId: i32) -> vec3f {
let tt = fract(t);
if (paletteId == 0) { // Ivy Green
return vec3f(0.13 + 0.2 * tt, 0.5 + 0.4 * tt, 0.2 + 0.2 * tt);
} else if (paletteId == 1) { // Rainbow
return vec3f(
0.5 + 0.5 * cos(6.28318 * (tt + 0.0)),
0.5 + 0.5 * cos(6.28318 * (tt + 0.33)),
0.5 + 0.5 * cos(6.28318 * (tt + 0.67))
);
} else if (paletteId == 2) { // Fire
return vec3f(1.0, 0.3 + 0.5 * tt, tt * 0.2);
} else if (paletteId == 3) { // Ocean
return vec3f(0.1 * tt, 0.3 + 0.4 * tt, 0.6 + 0.4 * tt);
} else if (paletteId == 4) { // Neon
return vec3f(
0.5 + 0.5 * sin(tt * 12.0),
0.5 + 0.5 * sin(tt * 12.0 + 2.0),
0.5 + 0.5 * sin(tt * 12.0 + 4.0)
);
} else if (paletteId == 5) { // Gold
return vec3f(1.0, 0.8 * tt + 0.2, 0.2 * tt);
} else { // Cosmic - Purple/Pink/Blue sparkle like image 2
return vec3f(
0.4 + 0.6 * sin(tt * 8.0 + 1.0),
0.2 + 0.3 * sin(tt * 6.0 + 2.0),
0.6 + 0.4 * sin(tt * 10.0 + 4.0)
);
}
}
@vertex
fn vertexMain(input: VertexInput) -> VertexOutput {
// Quad vertices
var quadPos = array<vec2f, 6>(
vec2f(-1.0, -1.0),
vec2f(1.0, -1.0),
vec2f(1.0, 1.0),
vec2f(-1.0, -1.0),
vec2f(1.0, 1.0),
vec2f(-1.0, 1.0)
);
let size = u.size * 0.01;
let offset = quadPos[input.vertexIndex] * size;
var output: VertexOutput;
output.position = vec4f(
input.pos.x + offset.x / u.aspect,
input.pos.y + offset.y,
0.0, 1.0
);
output.uv = quadPos[input.vertexIndex] * 0.5 + 0.5;
output.speed = length(input.vel);
output.vel = input.vel; // Pass velocity for special modes
return output;
}
@fragment
fn fragmentMain(input: VertexOutput) -> @location(0) vec4f {
// Circular particle with glow
let dist = length(input.uv - 0.5) * 2.0;
if (dist > 1.0) {
discard;
}
let paletteId = i32(u.palette);
let mode = i32(u.mode);
var hue = fract(input.speed * 20.0 + u.time * 0.1);
var color = getPaletteColor(hue, paletteId);
var alpha: f32;
if (mode == 8) {
// π WAVE GRID - Color based on wave function, not speed
let gridX = input.vel.x;
let gridY = input.vel.y;
// Multiple wave layers for color
let wave1 = sin(gridX * 8.0 + u.time * 1.5) * 0.5 + 0.5;
let wave2 = sin(gridY * 6.0 - u.time * 1.2) * 0.5 + 0.5;
let wave3 = sin((gridX + gridY) * 5.0 + u.time) * 0.5 + 0.5;
hue = fract(wave1 * 0.4 + wave2 * 0.3 + wave3 * 0.3);
color = getPaletteColor(hue, paletteId);
// Small dots with soft glow
let core = 1.0 - smoothstep(0.0, 0.4, dist);
let glow = 1.0 - smoothstep(0.0, 1.0, dist);
alpha = core * 0.95 + glow * 0.3;
color *= 1.2;
} else if (mode == 9) {
// π¨ PAINT SPLATTER - Color based on cluster hue stored in vel.x
let clusterHue = input.vel.x;
let distFromCenter = input.vel.y;
// Vibrant distinct colors per cluster
hue = clusterHue;
color = getPaletteColor(hue, 1); // Force rainbow for best splatter effect
// Vary brightness based on distance from cluster center
let brightness = 0.8 + distFromCenter * 0.4;
color *= brightness;
// Solid dots with slight soft edge
alpha = 1.0 - smoothstep(0.7, 1.0, dist);
} else if (mode >= 5 && mode <= 7) {
// Enhanced glow for tunnel, dna, galaxy
let core = 1.0 - smoothstep(0.0, 0.3, dist);
let glow = 1.0 - smoothstep(0.0, 1.0, dist);
alpha = core * 0.9 + glow * 0.4;
let sparkle = sin(u.time * 20.0 + input.speed * 100.0) * 0.3 + 0.7;
color *= sparkle * 1.5;
} else {
// Standard soft edge for other modes
alpha = 1.0 - smoothstep(0.5, 1.0, dist);
}
return vec4f(color * alpha * 0.8, alpha * 0.6);
}
`;
}
}
// Export
window.ParticlesRenderer = ParticlesRenderer;
|