File size: 15,555 Bytes
ae7e181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import spaces
import os
import gradio as gr
import torch
import numpy as np
import cv2
import safetensors
from PIL import Image, ImageDraw
from diffusers import AutoencoderKL
from diffusers.utils import load_image, check_min_version
from controlnet_flux import FluxControlNetModel
from pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline
from transformers import AutoProcessor, pipeline, AutoModelForMaskGeneration
from diffusers.models.attention_processor import Attention
from dataclasses import dataclass
from typing import Any, List, Dict, Optional, Union, Tuple
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, FluxTransformer2DModel, FluxPipeline
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel

# Ensure that the minimal version of diffusers is installed
check_min_version("0.30.2")
HF_TOKEN = os.getenv("HF_TOKEN")
os.environ['PYTORCH_NO_CUDA_MEMORY_CACHING'] = '1'
dtype = torch.bfloat16

good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", 
                                         subfolder="vae", 
                                         torch_dtype=dtype,
                                         use_safetensors=True, 
                                         token=HF_TOKEN
                                        ).to("cuda") 

# quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
# transformer_8bit = FluxTransformer2DModel.from_pretrained(
#     "black-forest-labs/FLUX.1-dev",
#     subfolder="transformer",
#     quantization_config=quant_config,
#     torch_dtype=dtype,
#     token=HF_TOKEN
# )

# Quantize the text encoder to 8-bit precision
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = T5EncoderModel.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
    subfolder="text_encoder_2",
    quantization_config=quant_config,
    torch_dtype=torch.float16,
    token=HF_TOKEN
)

# # Load necessary models and processors
# controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta", torch_dtype=torch.bfloat16)
# pipe = FluxControlNetInpaintingPipeline.from_pretrained(
#     "LPX55/FLUX.1-merged_uncensored",
#     vae=good_vae,
#     # transformer=transformer_8bit,
#     controlnet=controlnet,
#     torch_dtype=dtype,
#     use_safetensors=True,
#     token=HF_TOKEN
# ).to("cuda")


controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta", torch_dtype=torch.bfloat16)
pipe = FluxControlNetInpaintingPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
    controlnet=controlnet,
    torch_dtype=torch.bfloat16
).to("cuda")
pipe.transformer.to(torch.bfloat16)
pipe.controlnet.to(torch.bfloat16)
pipe.text_encoder_2 = text_encoder_8bit
base_attn_procs = pipe.transformer.attn_processors.copy()

detector_id = "IDEA-Research/grounding-dino-tiny"
segmenter_id = "facebook/sam-vit-base"

segmentator = AutoModelForMaskGeneration.from_pretrained(segmenter_id).cuda()
segment_processor = AutoProcessor.from_pretrained(segmenter_id)
object_detector = pipeline(model=detector_id, task="zero-shot-object-detection", device=torch.device("cuda"))


@dataclass
class BoundingBox:
    xmin: int
    ymin: int
    xmax: int
    ymax: int
    @property
    def xyxy(self) -> List[float]:
        return [self.xmin, self.ymin, self.xmax, self.ymax]

@dataclass
class DetectionResult:
    score: float
    label: str
    box: BoundingBox
    mask: Optional[np.array] = None
    @classmethod
    def from_dict(cls, detection_dict: Dict) -> 'DetectionResult':
        return cls(score=detection_dict['score'],
                   label=detection_dict['label'],
                   box=BoundingBox(xmin=detection_dict['box']['xmin'],
                                   ymin=detection_dict['box']['ymin'],
                                   xmax=detection_dict['box']['xmax'],
                                   ymax=detection_dict['box']['ymax']))

def mask_to_polygon(mask: np.ndarray) -> List[List[int]]:
    contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    if not contours:
        return []
    largest_contour = max(contours, key=cv2.contourArea)
    polygon = largest_contour.reshape(-1, 2).tolist()
    return polygon

def polygon_to_mask(polygon: List[Tuple[int, int]], image_shape: Tuple[int, int]) -> np.ndarray:
    mask = np.zeros(image_shape, dtype=np.uint8)
    pts = np.array(polygon, dtype=np.int32)
    cv2.fillPoly(mask, [pts], color=(255,))
    return mask

def get_boxes(results: List[DetectionResult]) -> List[List[List[float]]]:
    boxes = []
    for result in results:
        xyxy = result.box.xyxy
        boxes.append(xyxy)
    return [boxes]

def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> List[np.ndarray]:
    masks = masks.cpu().float()
    masks = masks.permute(0, 2, 3, 1)
    masks = masks.mean(axis=-1)
    masks = (masks > 0).int()
    masks = masks.numpy().astype(np.uint8)
    masks = list(masks)
    if polygon_refinement:
        for idx, mask in enumerate(masks):
            shape = mask.shape
            polygon = mask_to_polygon(mask)
            mask = polygon_to_mask(polygon, shape)
            masks[idx] = mask
    return masks

def detect(
    object_detector,
    image: Image.Image,
    labels: List[str],
    threshold: float = 0.3,
    detector_id: Optional[str] = None
) -> List[Dict[str, Any]]:
    device = "cuda" if torch.cuda.is_available() else "cpu"
    detector_id = detector_id if detector_id is not None else detector_id
    labels = [label if label.endswith(".") else label+"." for label in labels]
    results = object_detector(image, candidate_labels=labels, threshold=threshold)
    results = [DetectionResult.from_dict(result) for result in results]
    return results

def segment(
    segmentator,
    processor,
    image_tensor: torch.Tensor,
    detection_results: List[Dict[str, Any]],
    polygon_refinement: bool = False
) -> List[DetectionResult]:
    device = image_tensor.device
    
    boxes = get_boxes(detection_results)
    
    # Convert image tensor to float32 for processing
    image_tensor_float32 = image_tensor.to(torch.float32)
    
    inputs = processor(images=image_tensor_float32, input_boxes=boxes, return_tensors="pt", torch_dtype=torch.float32)
    
    # Process inputs and get outputs
    outputs = segmentator(**inputs)
    
    # Convert masks to bfloat16 if needed
    masks = outputs.pred_masks.to(torch.bfloat16)
    
    masks = processor.post_process_masks(
        masks=masks,
        original_sizes=inputs.original_sizes,
        reshaped_input_sizes=inputs.reshaped_input_sizes
    )[0]
    
    masks = refine_masks(masks, polygon_refinement)
    
    for detection_result, mask in zip(detection_results, masks):
        detection_result.mask = mask
    
    return detection_results
    
def grounded_segmentation(
    detect_pipeline,
    segmentator,
    segment_processor,
    image: Union[Image.Image, str],
    labels: List[str],
    threshold: float = 0.3,
    polygon_refinement: bool = False,
    detector_id: Optional[str] = None,
    segmenter_id: Optional[str] = None
) -> Tuple[np.ndarray, List[DetectionResult]]:
    if isinstance(image, str):
        image = load_image(image)
    
    # Convert image to tensor and to float32 for processing
    image_tensor = torch.tensor(np.array(image), dtype=torch.float32, device="cuda").permute(2, 0, 1).unsqueeze(0) / 255.0
    
    detections = detect(detect_pipeline, image, labels, threshold, detector_id)
    detections = segment(segmentator, segment_processor, image_tensor, detections, polygon_refinement)
    
    # Convert image tensor back to numpy array for return
    image_array = image_tensor.squeeze(0).permute(1, 2, 0).cpu().numpy() * 255
    image_array = image_array.astype(np.uint8)
    
    return image_array, detections
    
class CustomFluxAttnProcessor2_0:
    def __init__(self, height=44, width=88, attn_enforce=1.0):
        if not hasattr(torch.nn.functional, "scaled_dot_product_attention"):
            raise ImportError("FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
        self.height = height
        self.width = width
        self.num_pixels = height * width
        self.step = 0
        self.attn_enforce = attn_enforce

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.FloatTensor:
        self.step += 1
        batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)
        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads
        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)
        if encoder_hidden_states is not None:
            encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
            encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
            encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
            encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            if attn.norm_added_q is not None:
                encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
            if attn.norm_added_k is not None:
                encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
            query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
        if image_rotary_emb is not None:
            from diffusers.models.embeddings import apply_rotary_emb
            query = apply_rotary_emb(query, image_rotary_emb)
            key = apply_rotary_emb(key, image_rotary_emb)
        if self.attn_enforce != 1.0:
            attn_probs = (torch.einsum('bhqd,bhkd->bhqk', query, key) * attn.scale).softmax(dim=-1)
            img_attn_probs = attn_probs[:, :, -self.num_pixels:, -self.num_pixels:]
            img_attn_probs = img_attn_probs.reshape((batch_size, attn.heads, self.height, self.width, self.height, self.width))
            img_attn_probs[:, :, :, self.width//2:, :, :self.width//2] *= self.attn_enforce
            img_attn_probs = img_attn_probs.reshape((batch_size, attn.heads, self.num_pixels, self.num_pixels))
            attn_probs[:, :, -self.num_pixels:, -self.num_pixels:] = img_attn_probs
            hidden_states = torch.einsum('bhqk,bhkd->bhqd', attn_probs, value)
        else:
            hidden_states = torch.nn.functional.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)
        if encoder_hidden_states is not None:
            encoder_hidden_states, hidden_states = (
                hidden_states[:, : encoder_hidden_states.shape[1]],
                hidden_states[:, encoder_hidden_states.shape[1] :],
            )
            hidden_states = attn.to_out[0](hidden_states)
            hidden_states = attn.to_out[1](hidden_states)
            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
            return hidden_states, encoder_hidden_states
        else:
            return hidden_states

def segment_image(image, object_name):
    image_array, detections = grounded_segmentation(
        object_detector,
        segmentator,
        segment_processor,
        image=image,
        labels=object_name,
        threshold=0.3,
        polygon_refinement=True,
    )
    segment_result = image_array * np.expand_dims((255 - detections[0].mask) / 255, axis=-1)
    segmented_image = Image.fromarray(segment_result.astype(np.uint8))
    return segmented_image

def make_diptych(image):
    ref_image = np.array(image)
    ref_image = np.concatenate([ref_image, np.zeros_like(ref_image)], axis=1)
    ref_image = Image.fromarray(ref_image)
    return ref_image

@spaces.GPU()
def inpaint_image(image, prompt, object_name):
    width = 512
    height = 512
    size = (width * 2, height)
    diptych_text_prompt = f"A diptych with two side-by-side images of same {object_name}. On the left, a photo of {object_name}. On the right, {prompt}"
    reference_image = image.resize((width, height)).convert("RGB")
    segmented_image = segment_image(reference_image, object_name)
    mask_image = np.concatenate([np.zeros((height, width, 3)), np.ones((height, width, 3))*255], axis=1)
    mask_image = Image.fromarray(mask_image.astype(np.uint8))
    diptych_image_prompt = make_diptych(segmented_image)

    base_attn_procs = pipe.transformer.attn_processors.copy()
    new_attn_procs = base_attn_procs.copy()
    for i, (k, v) in enumerate(new_attn_procs.items()):
        new_attn_procs[k] = CustomFluxAttnProcessor2_0(height=height // 16, width=width // 16 * 2, attn_enforce=1.3)
    pipe.transformer.set_attn_processor(new_attn_procs)
    generator = torch.Generator(device="cuda").manual_seed(42)
    with torch.no_grad():
        result = pipe(
            prompt=diptych_text_prompt,
            height=size[1],
            width=size[0],
            control_image=diptych_image_prompt,
            control_mask=mask_image,
            num_inference_steps=20,
            generator=generator,
            controlnet_conditioning_scale=0.95,
            guidance_scale=3.5,
            negative_prompt="",
            true_guidance_scale=3.5
        ).images[0]
    result = result.crop((width, 0, width*2, height))

    torch.cuda.empty_cache()
    return result, diptych_image_prompt

# Create Gradio interface
iface = gr.Interface(
    fn=inpaint_image,
    inputs=[
        gr.Image(type="pil", label="Upload Image"),
        gr.Textbox(lines=3, value="replicate this {subject_name} exactly but as a photo of the {subject_name} surfing on the beach", label="Prompt"),
        gr.Textbox(lines=1, value="bear plushie", label="Subject Name")
    ],
    outputs=[
        gr.Image(type="pil", label="Inpainted Image"),
        gr.Image(type="pil", label="Diptych Image")
    ],
    title="FLUX Inpainting with Diptych Prompting",
    description="Upload an image, specify a prompt, and provide the subject name. The app will automatically generate the inpainted image."
)

# Launch the app
iface.launch()