Spaces:
Sleeping
Sleeping
Update agent_logic.py
Browse files- agent_logic.py +4 -10
agent_logic.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
# agent_logic.py (FINAL
|
| 2 |
import asyncio
|
| 3 |
from typing import AsyncGenerator, Dict, Optional
|
| 4 |
import json
|
|
@@ -6,14 +6,13 @@ import os
|
|
| 6 |
import google.generativeai as genai
|
| 7 |
from anthropic import AsyncAnthropic
|
| 8 |
from openai import AsyncOpenAI
|
| 9 |
-
import re
|
| 10 |
from personas import PERSONAS_DATA
|
| 11 |
import config
|
| 12 |
from utils import load_prompt
|
| 13 |
from mcp_servers import AgentCalibrator, BusinessSolutionEvaluator, get_llm_response
|
| 14 |
from self_correction import SelfCorrector
|
| 15 |
|
| 16 |
-
# (Configuration and Manager Prompts are loaded here)
|
| 17 |
CLASSIFIER_SYSTEM_PROMPT = load_prompt(config.PROMPT_FILES["classifier"])
|
| 18 |
HOMOGENEOUS_MANAGER_PROMPT = load_prompt(config.PROMPT_FILES["manager_homogeneous"])
|
| 19 |
HETEROGENEOUS_MANAGER_PROMPT = load_prompt(config.PROMPT_FILES["manager_heterogeneous"])
|
|
@@ -170,17 +169,15 @@ class StrategicSelectorAgent:
|
|
| 170 |
normalized_fitness = {}
|
| 171 |
if isinstance(v_fitness_json, dict):
|
| 172 |
for k, v in v_fitness_json.items():
|
|
|
|
| 173 |
if isinstance(v, dict):
|
| 174 |
-
# Standard format: {"score": 4, "justification": "..."}
|
| 175 |
score_value = v.get('score')
|
| 176 |
justification_value = v.get('justification', str(v))
|
| 177 |
elif isinstance(v, list) and len(v) > 0 and isinstance(v[0], dict):
|
| 178 |
-
# Handles list structure: [{"score": 4, "justification": "..."}]
|
| 179 |
score_value = v[0].get('score')
|
| 180 |
justification_value = v[0].get('justification', str(v[0]))
|
| 181 |
else:
|
| 182 |
-
# Fallback
|
| 183 |
-
score_value = 0
|
| 184 |
justification_value = str(v)
|
| 185 |
|
| 186 |
# FIX: Extract the integer score from the string (e.g., "4/5" -> 4)
|
|
@@ -190,7 +187,6 @@ class StrategicSelectorAgent:
|
|
| 190 |
except:
|
| 191 |
score_value = 0
|
| 192 |
|
| 193 |
-
# Ensure score is an integer
|
| 194 |
try:
|
| 195 |
score_value = int(score_value)
|
| 196 |
except (ValueError, TypeError):
|
|
@@ -199,11 +195,9 @@ class StrategicSelectorAgent:
|
|
| 199 |
normalized_fitness[k] = {'score': score_value, 'justification': justification_value}
|
| 200 |
|
| 201 |
else:
|
| 202 |
-
# Fallback if the whole thing isn't a dict
|
| 203 |
normalized_fitness = {k: {'score': 0, 'justification': "Invalid JSON structure"} for k in ["Novelty", "Usefulness_Feasibility", "Flexibility", "Elaboration", "Cultural_Appropriateness"]}
|
| 204 |
|
| 205 |
v_fitness_json = normalized_fitness
|
| 206 |
-
# ----------------------------------------------------
|
| 207 |
|
| 208 |
scores = {k: v.get('score', 0) for k, v in v_fitness_json.items()}
|
| 209 |
yield f"Evaluation Score: {scores}"
|
|
|
|
| 1 |
+
# agent_logic.py (Milestone 5 - FINAL & ROBUST)
|
| 2 |
import asyncio
|
| 3 |
from typing import AsyncGenerator, Dict, Optional
|
| 4 |
import json
|
|
|
|
| 6 |
import google.generativeai as genai
|
| 7 |
from anthropic import AsyncAnthropic
|
| 8 |
from openai import AsyncOpenAI
|
| 9 |
+
import re
|
| 10 |
from personas import PERSONAS_DATA
|
| 11 |
import config
|
| 12 |
from utils import load_prompt
|
| 13 |
from mcp_servers import AgentCalibrator, BusinessSolutionEvaluator, get_llm_response
|
| 14 |
from self_correction import SelfCorrector
|
| 15 |
|
|
|
|
| 16 |
CLASSIFIER_SYSTEM_PROMPT = load_prompt(config.PROMPT_FILES["classifier"])
|
| 17 |
HOMOGENEOUS_MANAGER_PROMPT = load_prompt(config.PROMPT_FILES["manager_homogeneous"])
|
| 18 |
HETEROGENEOUS_MANAGER_PROMPT = load_prompt(config.PROMPT_FILES["manager_heterogeneous"])
|
|
|
|
| 169 |
normalized_fitness = {}
|
| 170 |
if isinstance(v_fitness_json, dict):
|
| 171 |
for k, v in v_fitness_json.items():
|
| 172 |
+
# Determine score value (safe check for list wrapping, which causes the crash)
|
| 173 |
if isinstance(v, dict):
|
|
|
|
| 174 |
score_value = v.get('score')
|
| 175 |
justification_value = v.get('justification', str(v))
|
| 176 |
elif isinstance(v, list) and len(v) > 0 and isinstance(v[0], dict):
|
|
|
|
| 177 |
score_value = v[0].get('score')
|
| 178 |
justification_value = v[0].get('justification', str(v[0]))
|
| 179 |
else:
|
| 180 |
+
score_value = v.get('score', 0) if isinstance(v, dict) else 0 # Fallback check
|
|
|
|
| 181 |
justification_value = str(v)
|
| 182 |
|
| 183 |
# FIX: Extract the integer score from the string (e.g., "4/5" -> 4)
|
|
|
|
| 187 |
except:
|
| 188 |
score_value = 0
|
| 189 |
|
|
|
|
| 190 |
try:
|
| 191 |
score_value = int(score_value)
|
| 192 |
except (ValueError, TypeError):
|
|
|
|
| 195 |
normalized_fitness[k] = {'score': score_value, 'justification': justification_value}
|
| 196 |
|
| 197 |
else:
|
|
|
|
| 198 |
normalized_fitness = {k: {'score': 0, 'justification': "Invalid JSON structure"} for k in ["Novelty", "Usefulness_Feasibility", "Flexibility", "Elaboration", "Cultural_Appropriateness"]}
|
| 199 |
|
| 200 |
v_fitness_json = normalized_fitness
|
|
|
|
| 201 |
|
| 202 |
scores = {k: v.get('score', 0) for k, v in v_fitness_json.items()}
|
| 203 |
yield f"Evaluation Score: {scores}"
|