Spaces:
Running
Running
Update mcp_servers.py
Browse files- mcp_servers.py +25 -117
mcp_servers.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
# mcp_servers.py (FIXED:
|
| 2 |
import asyncio
|
| 3 |
import json
|
| 4 |
import re
|
|
@@ -12,56 +12,20 @@ from personas import PERSONAS_DATA
|
|
| 12 |
|
| 13 |
EVALUATION_PROMPT_TEMPLATE = load_prompt(config.PROMPT_FILES["evaluator"])
|
| 14 |
|
| 15 |
-
#
|
| 16 |
EVALUATION_SCHEMA = {
|
| 17 |
"type": "OBJECT",
|
| 18 |
"properties": {
|
| 19 |
-
"Novelty": {
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
},
|
| 25 |
-
"required": ["score", "justification"]
|
| 26 |
-
},
|
| 27 |
-
"Usefulness_Feasibility": {
|
| 28 |
-
"type": "OBJECT",
|
| 29 |
-
"properties": {
|
| 30 |
-
"score": {"type": "INTEGER"},
|
| 31 |
-
"justification": {"type": "STRING"}
|
| 32 |
-
},
|
| 33 |
-
"required": ["score", "justification"]
|
| 34 |
-
},
|
| 35 |
-
"Flexibility": {
|
| 36 |
-
"type": "OBJECT",
|
| 37 |
-
"properties": {
|
| 38 |
-
"score": {"type": "INTEGER"},
|
| 39 |
-
"justification": {"type": "STRING"}
|
| 40 |
-
},
|
| 41 |
-
"required": ["score", "justification"]
|
| 42 |
-
},
|
| 43 |
-
"Elaboration": {
|
| 44 |
-
"type": "OBJECT",
|
| 45 |
-
"properties": {
|
| 46 |
-
"score": {"type": "INTEGER"},
|
| 47 |
-
"justification": {"type": "STRING"}
|
| 48 |
-
},
|
| 49 |
-
"required": ["score", "justification"]
|
| 50 |
-
},
|
| 51 |
-
"Cultural_Appropriateness": {
|
| 52 |
-
"type": "OBJECT",
|
| 53 |
-
"properties": {
|
| 54 |
-
"score": {"type": "INTEGER"},
|
| 55 |
-
"justification": {"type": "STRING"}
|
| 56 |
-
},
|
| 57 |
-
"required": ["score", "justification"]
|
| 58 |
-
}
|
| 59 |
},
|
| 60 |
"required": ["Novelty", "Usefulness_Feasibility", "Flexibility", "Elaboration", "Cultural_Appropriateness"]
|
| 61 |
}
|
| 62 |
|
| 63 |
def extract_json(text: str) -> dict:
|
| 64 |
-
"""Robustly extracts JSON from text."""
|
| 65 |
try:
|
| 66 |
clean_text = text.strip()
|
| 67 |
if "```json" in clean_text:
|
|
@@ -72,38 +36,26 @@ def extract_json(text: str) -> dict:
|
|
| 72 |
except (json.JSONDecodeError, IndexError):
|
| 73 |
try:
|
| 74 |
match = re.search(r'(\{[\s\S]*\})', text)
|
| 75 |
-
if match:
|
| 76 |
-
|
| 77 |
-
except:
|
| 78 |
-
pass
|
| 79 |
raise ValueError(f"Could not extract JSON from response: {text[:100]}...")
|
| 80 |
|
| 81 |
class BusinessSolutionEvaluator:
|
| 82 |
def __init__(self, gemini_client: Optional[genai.GenerativeModel]):
|
| 83 |
-
if not gemini_client:
|
| 84 |
-
raise ValueError("BusinessSolutionEvaluator requires a Google/Gemini client.")
|
| 85 |
self.gemini_model = gemini_client
|
| 86 |
-
if "ERROR:" in EVALUATION_PROMPT_TEMPLATE:
|
| 87 |
-
raise FileNotFoundError(EVALUATION_PROMPT_TEMPLATE)
|
| 88 |
|
| 89 |
async def evaluate(self, problem: str, solution_text: str) -> Tuple[dict, dict]:
|
| 90 |
-
"""Returns (evaluation_dict, usage_dict)"""
|
| 91 |
print(f"Evaluating solution (live): {solution_text[:50]}...")
|
| 92 |
-
|
| 93 |
base_prompt = EVALUATION_PROMPT_TEMPLATE.format(problem=problem, solution_text=solution_text)
|
| 94 |
|
| 95 |
schema_instruction = """
|
| 96 |
[IMPORTANT SYSTEM INSTRUCTION]
|
| 97 |
Ignore any previous examples of JSON formatting in this prompt.
|
| 98 |
You MUST strictly follow the Output Schema provided below.
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
1. "score": An integer from 1 to 5.
|
| 102 |
-
2. "justification": A specific sentence explaining why you gave that score.
|
| 103 |
-
|
| 104 |
-
Do not output a list. Return a single JSON object describing the solution above.
|
| 105 |
"""
|
| 106 |
-
|
| 107 |
final_prompt = base_prompt + schema_instruction
|
| 108 |
usage = {"model": "Gemini", "input": 0, "output": 0}
|
| 109 |
|
|
@@ -115,29 +67,16 @@ class BusinessSolutionEvaluator:
|
|
| 115 |
response_schema=EVALUATION_SCHEMA
|
| 116 |
)
|
| 117 |
)
|
| 118 |
-
|
| 119 |
-
# Capture Usage
|
| 120 |
if hasattr(response, "usage_metadata"):
|
| 121 |
usage["input"] = response.usage_metadata.prompt_token_count
|
| 122 |
usage["output"] = response.usage_metadata.candidates_token_count
|
| 123 |
|
| 124 |
v_fitness = extract_json(response.text)
|
| 125 |
-
|
| 126 |
-
if not isinstance(v_fitness, (dict, list)):
|
| 127 |
-
raise ValueError(f"Judge returned invalid type: {type(v_fitness)}")
|
| 128 |
-
|
| 129 |
-
print(f"Evaluation complete (live): {v_fitness}")
|
| 130 |
return v_fitness, usage
|
| 131 |
-
|
| 132 |
except Exception as e:
|
| 133 |
print(f"ERROR: BusinessSolutionEvaluator failed: {e}")
|
| 134 |
-
return {
|
| 135 |
-
"Novelty": {"score": 1, "justification": f"Error: {str(e)}"},
|
| 136 |
-
"Usefulness_Feasibility": {"score": 1, "justification": f"Error: {str(e)}"},
|
| 137 |
-
"Flexibility": {"score": 1, "justification": f"Error: {str(e)}"},
|
| 138 |
-
"Elaboration": {"score": 1, "justification": f"Error: {str(e)}"},
|
| 139 |
-
"Cultural_Appropriateness": {"score": 1, "justification": f"Error: {str(e)}"}
|
| 140 |
-
}, usage
|
| 141 |
|
| 142 |
class AgentCalibrator:
|
| 143 |
def __init__(self, api_clients: dict, evaluator: BusinessSolutionEvaluator):
|
|
@@ -150,11 +89,12 @@ class AgentCalibrator:
|
|
| 150 |
print(f"Running LIVE calibration test for specialist team on {self.sponsor_llms}...")
|
| 151 |
error_log = []
|
| 152 |
detailed_results = []
|
| 153 |
-
all_usage_stats = []
|
| 154 |
|
| 155 |
if not self.sponsor_llms:
|
| 156 |
raise Exception("AgentCalibrator cannot run: No LLM clients are configured.")
|
| 157 |
|
|
|
|
| 158 |
if len(self.sponsor_llms) == 1:
|
| 159 |
default_llm = self.sponsor_llms[0]
|
| 160 |
print("Only one LLM available. Skipping calibration.")
|
|
@@ -163,12 +103,10 @@ class AgentCalibrator:
|
|
| 163 |
"Implementer": {"persona": config.CALIBRATION_CONFIG["roles_to_test"]["Implementer"], "llm": default_llm},
|
| 164 |
"Monitor": {"persona": config.CALIBRATION_CONFIG["roles_to_test"]["Monitor"], "llm": default_llm}
|
| 165 |
}
|
|
|
|
| 166 |
return plan, error_log, [], []
|
| 167 |
|
| 168 |
-
roles_to_test = {
|
| 169 |
-
role: PERSONAS_DATA[key]["description"]
|
| 170 |
-
for role, key in config.CALIBRATION_CONFIG["roles_to_test"].items()
|
| 171 |
-
}
|
| 172 |
test_problem = f"For the business problem '{problem}', generate a single, brief, one-paragraph concept-level solution."
|
| 173 |
|
| 174 |
tasks = []
|
|
@@ -179,7 +117,6 @@ class AgentCalibrator:
|
|
| 179 |
results = await asyncio.gather(*tasks)
|
| 180 |
detailed_results = results
|
| 181 |
|
| 182 |
-
# Flatten results to extract usage
|
| 183 |
for res in results:
|
| 184 |
if "usage_gen" in res: all_usage_stats.append(res["usage_gen"])
|
| 185 |
if "usage_eval" in res: all_usage_stats.append(res["usage_eval"])
|
|
@@ -197,7 +134,6 @@ class AgentCalibrator:
|
|
| 197 |
continue
|
| 198 |
metric = role_metrics[role]
|
| 199 |
|
| 200 |
-
# Robust Dict Access
|
| 201 |
raw_score_data = res.get("score", {})
|
| 202 |
if not isinstance(raw_score_data, (dict, list)): raw_score_data = {}
|
| 203 |
if isinstance(raw_score_data, list): raw_score_data = raw_score_data[0] if len(raw_score_data) > 0 else {}
|
|
@@ -207,7 +143,6 @@ class AgentCalibrator:
|
|
| 207 |
if isinstance(metric_data, list): metric_data = metric_data[0] if len(metric_data) > 0 else {}
|
| 208 |
|
| 209 |
score = metric_data.get("score", 0)
|
| 210 |
-
|
| 211 |
if score > best_score:
|
| 212 |
best_score = score
|
| 213 |
best_llm = res["llm"]
|
|
@@ -219,78 +154,51 @@ class AgentCalibrator:
|
|
| 219 |
"Monitor": {"persona": config.CALIBRATION_CONFIG["roles_to_test"]["Monitor"], "llm": best_llms["Monitor"]}
|
| 220 |
}
|
| 221 |
print(f"Calibration complete (live). Team plan: {team_plan}")
|
|
|
|
| 222 |
return team_plan, error_log, detailed_results, all_usage_stats
|
| 223 |
|
| 224 |
async def run_calibration_test(self, problem, role, llm_name, persona, test_problem):
|
| 225 |
-
print(f"...Calibrating {role} on {llm_name}...")
|
| 226 |
client = self.api_clients[llm_name]
|
| 227 |
-
|
| 228 |
-
# 1. Generate Solution (and get usage)
|
| 229 |
solution, gen_usage = await get_llm_response(llm_name, client, persona, test_problem)
|
| 230 |
|
| 231 |
if "Error generating response" in solution:
|
| 232 |
return {"role": role, "llm": llm_name, "error": solution, "output": solution, "usage_gen": gen_usage}
|
| 233 |
|
| 234 |
-
# 2. Evaluate Solution (and get usage)
|
| 235 |
score, eval_usage = await self.evaluator.evaluate(problem, solution)
|
| 236 |
-
|
| 237 |
return {
|
| 238 |
-
"role": role,
|
| 239 |
-
"llm": llm_name,
|
| 240 |
-
"score": score,
|
| 241 |
-
"output": solution,
|
| 242 |
-
"usage_gen": gen_usage,
|
| 243 |
-
"usage_eval": eval_usage
|
| 244 |
}
|
| 245 |
|
| 246 |
-
# --- Unified API Call Function ---
|
| 247 |
async def get_llm_response(client_name: str, client, system_prompt: str, user_prompt: str) -> Tuple[str, dict]:
|
| 248 |
"""Returns (text_response, usage_dict)"""
|
| 249 |
usage = {"model": client_name, "input": 0, "output": 0}
|
| 250 |
try:
|
| 251 |
if client_name == "Gemini":
|
| 252 |
model = client
|
| 253 |
-
full_prompt = [
|
| 254 |
-
{'role': 'user', 'parts': [system_prompt]},
|
| 255 |
-
{'role': 'model', 'parts': ["Understood. I will act as this persona."]},
|
| 256 |
-
{'role': 'user', 'parts': [user_prompt]}
|
| 257 |
-
]
|
| 258 |
response = await model.generate_content_async(full_prompt)
|
| 259 |
-
|
| 260 |
-
# Capture Gemini Usage
|
| 261 |
if hasattr(response, "usage_metadata"):
|
| 262 |
usage["input"] = response.usage_metadata.prompt_token_count
|
| 263 |
usage["output"] = response.usage_metadata.candidates_token_count
|
| 264 |
-
|
| 265 |
return response.text, usage
|
| 266 |
|
| 267 |
elif client_name == "Anthropic":
|
| 268 |
response = await client.messages.create(
|
| 269 |
-
model=config.MODELS["Anthropic"]["default"],
|
| 270 |
-
max_tokens=8192,
|
| 271 |
-
system=system_prompt,
|
| 272 |
-
messages=[{"role": "user", "content": user_prompt}]
|
| 273 |
)
|
| 274 |
-
# Capture Anthropic Usage
|
| 275 |
if hasattr(response, "usage"):
|
| 276 |
usage["input"] = response.usage.input_tokens
|
| 277 |
usage["output"] = response.usage.output_tokens
|
| 278 |
-
|
| 279 |
return response.content[0].text, usage
|
| 280 |
|
| 281 |
-
elif client_name
|
|
|
|
| 282 |
completion = await client.chat.completions.create(
|
| 283 |
-
model=
|
| 284 |
-
messages=[
|
| 285 |
-
{"role": "system", "content": system_prompt},
|
| 286 |
-
{"role": "user", "content": user_prompt}
|
| 287 |
-
]
|
| 288 |
)
|
| 289 |
-
# Capture SambaNova Usage
|
| 290 |
if hasattr(completion, "usage"):
|
| 291 |
usage["input"] = completion.usage.prompt_tokens
|
| 292 |
usage["output"] = completion.usage.completion_tokens
|
| 293 |
-
|
| 294 |
return completion.choices[0].message.content, usage
|
| 295 |
|
| 296 |
except Exception as e:
|
|
|
|
| 1 |
+
# mcp_servers.py (FIXED: Guarantees 4-value return tuple)
|
| 2 |
import asyncio
|
| 3 |
import json
|
| 4 |
import re
|
|
|
|
| 12 |
|
| 13 |
EVALUATION_PROMPT_TEMPLATE = load_prompt(config.PROMPT_FILES["evaluator"])
|
| 14 |
|
| 15 |
+
# Schema definition
|
| 16 |
EVALUATION_SCHEMA = {
|
| 17 |
"type": "OBJECT",
|
| 18 |
"properties": {
|
| 19 |
+
"Novelty": {"type": "OBJECT", "properties": {"score": {"type": "INTEGER"}, "justification": {"type": "STRING"}}, "required": ["score", "justification"]},
|
| 20 |
+
"Usefulness_Feasibility": {"type": "OBJECT", "properties": {"score": {"type": "INTEGER"}, "justification": {"type": "STRING"}}, "required": ["score", "justification"]},
|
| 21 |
+
"Flexibility": {"type": "OBJECT", "properties": {"score": {"type": "INTEGER"}, "justification": {"type": "STRING"}}, "required": ["score", "justification"]},
|
| 22 |
+
"Elaboration": {"type": "OBJECT", "properties": {"score": {"type": "INTEGER"}, "justification": {"type": "STRING"}}, "required": ["score", "justification"]},
|
| 23 |
+
"Cultural_Appropriateness": {"type": "OBJECT", "properties": {"score": {"type": "INTEGER"}, "justification": {"type": "STRING"}}, "required": ["score", "justification"]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
},
|
| 25 |
"required": ["Novelty", "Usefulness_Feasibility", "Flexibility", "Elaboration", "Cultural_Appropriateness"]
|
| 26 |
}
|
| 27 |
|
| 28 |
def extract_json(text: str) -> dict:
|
|
|
|
| 29 |
try:
|
| 30 |
clean_text = text.strip()
|
| 31 |
if "```json" in clean_text:
|
|
|
|
| 36 |
except (json.JSONDecodeError, IndexError):
|
| 37 |
try:
|
| 38 |
match = re.search(r'(\{[\s\S]*\})', text)
|
| 39 |
+
if match: return json.loads(match.group(1))
|
| 40 |
+
except: pass
|
|
|
|
|
|
|
| 41 |
raise ValueError(f"Could not extract JSON from response: {text[:100]}...")
|
| 42 |
|
| 43 |
class BusinessSolutionEvaluator:
|
| 44 |
def __init__(self, gemini_client: Optional[genai.GenerativeModel]):
|
| 45 |
+
if not gemini_client: raise ValueError("BusinessSolutionEvaluator requires a Google/Gemini client.")
|
|
|
|
| 46 |
self.gemini_model = gemini_client
|
|
|
|
|
|
|
| 47 |
|
| 48 |
async def evaluate(self, problem: str, solution_text: str) -> Tuple[dict, dict]:
|
|
|
|
| 49 |
print(f"Evaluating solution (live): {solution_text[:50]}...")
|
|
|
|
| 50 |
base_prompt = EVALUATION_PROMPT_TEMPLATE.format(problem=problem, solution_text=solution_text)
|
| 51 |
|
| 52 |
schema_instruction = """
|
| 53 |
[IMPORTANT SYSTEM INSTRUCTION]
|
| 54 |
Ignore any previous examples of JSON formatting in this prompt.
|
| 55 |
You MUST strictly follow the Output Schema provided below.
|
| 56 |
+
For EACH of the 5 metrics, you must provide an object with TWO fields: "score" (integer) and "justification" (string).
|
| 57 |
+
Do not output a list. Return a single JSON object.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
"""
|
|
|
|
| 59 |
final_prompt = base_prompt + schema_instruction
|
| 60 |
usage = {"model": "Gemini", "input": 0, "output": 0}
|
| 61 |
|
|
|
|
| 67 |
response_schema=EVALUATION_SCHEMA
|
| 68 |
)
|
| 69 |
)
|
|
|
|
|
|
|
| 70 |
if hasattr(response, "usage_metadata"):
|
| 71 |
usage["input"] = response.usage_metadata.prompt_token_count
|
| 72 |
usage["output"] = response.usage_metadata.candidates_token_count
|
| 73 |
|
| 74 |
v_fitness = extract_json(response.text)
|
| 75 |
+
if not isinstance(v_fitness, (dict, list)): raise ValueError(f"Judge returned invalid type: {type(v_fitness)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
return v_fitness, usage
|
|
|
|
| 77 |
except Exception as e:
|
| 78 |
print(f"ERROR: BusinessSolutionEvaluator failed: {e}")
|
| 79 |
+
return {"Novelty": {"score": 1, "justification": f"Error: {str(e)}"}}, usage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
class AgentCalibrator:
|
| 82 |
def __init__(self, api_clients: dict, evaluator: BusinessSolutionEvaluator):
|
|
|
|
| 89 |
print(f"Running LIVE calibration test for specialist team on {self.sponsor_llms}...")
|
| 90 |
error_log = []
|
| 91 |
detailed_results = []
|
| 92 |
+
all_usage_stats = []
|
| 93 |
|
| 94 |
if not self.sponsor_llms:
|
| 95 |
raise Exception("AgentCalibrator cannot run: No LLM clients are configured.")
|
| 96 |
|
| 97 |
+
# If only one model, return default plan + empty lists for details/usage
|
| 98 |
if len(self.sponsor_llms) == 1:
|
| 99 |
default_llm = self.sponsor_llms[0]
|
| 100 |
print("Only one LLM available. Skipping calibration.")
|
|
|
|
| 103 |
"Implementer": {"persona": config.CALIBRATION_CONFIG["roles_to_test"]["Implementer"], "llm": default_llm},
|
| 104 |
"Monitor": {"persona": config.CALIBRATION_CONFIG["roles_to_test"]["Monitor"], "llm": default_llm}
|
| 105 |
}
|
| 106 |
+
# MUST RETURN 4 VALUES
|
| 107 |
return plan, error_log, [], []
|
| 108 |
|
| 109 |
+
roles_to_test = {role: PERSONAS_DATA[key]["description"] for role, key in config.CALIBRATION_CONFIG["roles_to_test"].items()}
|
|
|
|
|
|
|
|
|
|
| 110 |
test_problem = f"For the business problem '{problem}', generate a single, brief, one-paragraph concept-level solution."
|
| 111 |
|
| 112 |
tasks = []
|
|
|
|
| 117 |
results = await asyncio.gather(*tasks)
|
| 118 |
detailed_results = results
|
| 119 |
|
|
|
|
| 120 |
for res in results:
|
| 121 |
if "usage_gen" in res: all_usage_stats.append(res["usage_gen"])
|
| 122 |
if "usage_eval" in res: all_usage_stats.append(res["usage_eval"])
|
|
|
|
| 134 |
continue
|
| 135 |
metric = role_metrics[role]
|
| 136 |
|
|
|
|
| 137 |
raw_score_data = res.get("score", {})
|
| 138 |
if not isinstance(raw_score_data, (dict, list)): raw_score_data = {}
|
| 139 |
if isinstance(raw_score_data, list): raw_score_data = raw_score_data[0] if len(raw_score_data) > 0 else {}
|
|
|
|
| 143 |
if isinstance(metric_data, list): metric_data = metric_data[0] if len(metric_data) > 0 else {}
|
| 144 |
|
| 145 |
score = metric_data.get("score", 0)
|
|
|
|
| 146 |
if score > best_score:
|
| 147 |
best_score = score
|
| 148 |
best_llm = res["llm"]
|
|
|
|
| 154 |
"Monitor": {"persona": config.CALIBRATION_CONFIG["roles_to_test"]["Monitor"], "llm": best_llms["Monitor"]}
|
| 155 |
}
|
| 156 |
print(f"Calibration complete (live). Team plan: {team_plan}")
|
| 157 |
+
# MUST RETURN 4 VALUES
|
| 158 |
return team_plan, error_log, detailed_results, all_usage_stats
|
| 159 |
|
| 160 |
async def run_calibration_test(self, problem, role, llm_name, persona, test_problem):
|
|
|
|
| 161 |
client = self.api_clients[llm_name]
|
|
|
|
|
|
|
| 162 |
solution, gen_usage = await get_llm_response(llm_name, client, persona, test_problem)
|
| 163 |
|
| 164 |
if "Error generating response" in solution:
|
| 165 |
return {"role": role, "llm": llm_name, "error": solution, "output": solution, "usage_gen": gen_usage}
|
| 166 |
|
|
|
|
| 167 |
score, eval_usage = await self.evaluator.evaluate(problem, solution)
|
|
|
|
| 168 |
return {
|
| 169 |
+
"role": role, "llm": llm_name, "score": score, "output": solution, "usage_gen": gen_usage, "usage_eval": eval_usage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
}
|
| 171 |
|
|
|
|
| 172 |
async def get_llm_response(client_name: str, client, system_prompt: str, user_prompt: str) -> Tuple[str, dict]:
|
| 173 |
"""Returns (text_response, usage_dict)"""
|
| 174 |
usage = {"model": client_name, "input": 0, "output": 0}
|
| 175 |
try:
|
| 176 |
if client_name == "Gemini":
|
| 177 |
model = client
|
| 178 |
+
full_prompt = [{'role': 'user', 'parts': [system_prompt]}, {'role': 'model', 'parts': ["Understood."]}, {'role': 'user', 'parts': [user_prompt]}]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
response = await model.generate_content_async(full_prompt)
|
|
|
|
|
|
|
| 180 |
if hasattr(response, "usage_metadata"):
|
| 181 |
usage["input"] = response.usage_metadata.prompt_token_count
|
| 182 |
usage["output"] = response.usage_metadata.candidates_token_count
|
|
|
|
| 183 |
return response.text, usage
|
| 184 |
|
| 185 |
elif client_name == "Anthropic":
|
| 186 |
response = await client.messages.create(
|
| 187 |
+
model=config.MODELS["Anthropic"]["default"], max_tokens=8192, system=system_prompt, messages=[{"role": "user", "content": user_prompt}]
|
|
|
|
|
|
|
|
|
|
| 188 |
)
|
|
|
|
| 189 |
if hasattr(response, "usage"):
|
| 190 |
usage["input"] = response.usage.input_tokens
|
| 191 |
usage["output"] = response.usage.output_tokens
|
|
|
|
| 192 |
return response.content[0].text, usage
|
| 193 |
|
| 194 |
+
elif client_name in ["SambaNova", "OpenAI", "Nebius"]:
|
| 195 |
+
model_id = config.MODELS.get(client_name, {}).get("default", "gpt-4o-mini")
|
| 196 |
completion = await client.chat.completions.create(
|
| 197 |
+
model=model_id, messages=[{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
)
|
|
|
|
| 199 |
if hasattr(completion, "usage"):
|
| 200 |
usage["input"] = completion.usage.prompt_tokens
|
| 201 |
usage["output"] = completion.usage.completion_tokens
|
|
|
|
| 202 |
return completion.choices[0].message.content, usage
|
| 203 |
|
| 204 |
except Exception as e:
|