Spaces:
Running
Running
| import joblib | |
| import os | |
| import sys | |
| from sklearn.base import is_classifier | |
| models_dir = "models" | |
| files = [ | |
| "best_tree_models_calibrated.joblib", | |
| "best_tree_models_uncalibrated.joblib" | |
| ] | |
| print(f"Checking models in {models_dir}...") | |
| for f in files: | |
| path = os.path.join(models_dir, f) | |
| try: | |
| models = joblib.load(path) | |
| if isinstance(models, dict) and 'Trees' in models: | |
| xgb_model = models['Trees'].get('XGBoost') | |
| if xgb_model: | |
| print(f"\n--- {f} XGBoost Analysis ---") | |
| print(f"Type: {type(xgb_model)}") | |
| # Check sklearn version | |
| if hasattr(xgb_model, '_sklearn_version'): | |
| print(f"Sklearn Ver: {xgb_model._sklearn_version}") | |
| # Check classifier status | |
| print(f"is_classifier(model): {is_classifier(xgb_model)}") | |
| # Check Pipeline internals | |
| if hasattr(xgb_model, 'steps'): | |
| print("Pipeline Steps:") | |
| for name, step in xgb_model.steps: | |
| print(f" - {name}: {type(step).__name__}") | |
| if hasattr(step, '_sklearn_version'): | |
| print(f" Step Sklearn Ver: {step._sklearn_version}") | |
| if hasattr(step, '__class__'): | |
| print(f" is_classifier(step): {is_classifier(step)}") | |
| except Exception as e: | |
| print(f"Error loading {f}: {e}") | |