Spaces:
Running
Running
| import joblib | |
| from pathlib import Path | |
| import logging | |
| logging.basicConfig(level=logging.INFO) | |
| logger = logging.getLogger("verify_models") | |
| MODELS_DIR = Path("models") | |
| MODELS = {} | |
| def load_models(): | |
| """Load all available models using the same logic as app.py""" | |
| model_types = ["RandomForest", "ExtraTrees", "XGBoost"] | |
| calibration_types = ["calibrated", "uncalibrated"] | |
| for model_type in model_types: | |
| for cal_type in calibration_types: | |
| filename = f"best_tree_models_{cal_type}.joblib" | |
| filepath = MODELS_DIR / filename | |
| print(f"Checking for {filepath}...") | |
| if filepath.exists(): | |
| try: | |
| models_dict = joblib.load(filepath) | |
| if 'Trees' in models_dict and model_type in models_dict['Trees']: | |
| key = f"{model_type}_{cal_type}" | |
| MODELS[key] = models_dict['Trees'][model_type] | |
| print(f"SUCCESS: Loaded model: {key}") | |
| except Exception as e: | |
| print(f"ERROR: Error loading {filepath}: {e}") | |
| else: | |
| print(f"WARNING: File not found: {filepath}") | |
| print(f"Total models loaded: {len(MODELS)}") | |
| if len(MODELS) == 6: # 3 models * 2 types | |
| print("VERIFICATION SUCCESS: All 6 expected models loaded.") | |
| else: | |
| print(f"VERIFICATION FAILED: Expected 6 models, loaded {len(MODELS)}.") | |
| if __name__ == "__main__": | |
| load_models() | |