File size: 5,815 Bytes
45e145b 8791d59 bd8a3b8 1ce17ff bd8a3b8 8791d59 bd8a3b8 8791d59 45e145b 1ce17ff 8791d59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
from pydantic import BaseModel, Field, ConfigDict
from typing import Any, Dict, List, Optional
class ToolCallRequest(BaseModel):
"""Request for calling an MCP tool"""
model_config = ConfigDict(
json_schema_extra={
"example": {
"tool_name": "detect_stance",
"arguments": {
"topic": "Climate change is real",
"argument": "Rising global temperatures prove it"
}
}
}
)
tool_name: str = Field(..., description="Name of the MCP tool to call (e.g., 'detect_stance', 'match_keypoint_argument', 'transcribe_audio', 'generate_speech', 'generate_argument', 'extract_topic', 'voice_chat')")
arguments: Dict[str, Any] = Field(default_factory=dict, description="Arguments for the tool (varies by tool)")
class ToolCallResponse(BaseModel):
"""Response from MCP tool call"""
model_config = ConfigDict(
json_schema_extra={
"example": {
"success": True,
"result": {
"predicted_stance": "PRO",
"confidence": 0.9598,
"probability_con": 0.0402,
"probability_pro": 0.9598
},
"error": None,
"tool_name": "detect_stance"
}
}
)
success: bool = Field(..., description="Whether the tool call was successful")
result: Optional[Dict[str, Any]] = Field(None, description="Result from the tool call")
error: Optional[str] = Field(None, description="Error message if the call failed")
tool_name: str = Field(..., description="Name of the tool that was called")
# Response models for individual MCP tools
class DetectStanceResponse(BaseModel):
"""Response model for stance detection"""
model_config = ConfigDict(
json_schema_extra={
"example": {
"predicted_stance": "PRO",
"confidence": 0.9598,
"probability_con": 0.0402,
"probability_pro": 0.9598
}
}
)
predicted_stance: str = Field(..., description="PRO or CON")
confidence: float = Field(..., ge=0.0, le=1.0, description="Confidence score")
probability_con: float = Field(..., ge=0.0, le=1.0)
probability_pro: float = Field(..., ge=0.0, le=1.0)
class MatchKeypointResponse(BaseModel):
"""Response model for keypoint matching"""
model_config = ConfigDict(
json_schema_extra={
"example": {
"prediction": 1,
"label": "apparie",
"confidence": 0.8157,
"probabilities": {
"non_apparie": 0.1843,
"apparie": 0.8157
}
}
}
)
prediction: int = Field(..., description="1 = apparie, 0 = non_apparie")
label: str = Field(..., description="apparie or non_apparie")
confidence: float = Field(..., ge=0.0, le=1.0, description="Confidence score")
probabilities: Dict[str, float] = Field(..., description="Dictionary of class probabilities")
class TranscribeAudioResponse(BaseModel):
"""Response model for audio transcription"""
model_config = ConfigDict(
json_schema_extra={
"example": {
"text": "Hello, this is the transcribed text from the audio file."
}
}
)
text: str = Field(..., description="Transcribed text from audio")
class GenerateSpeechResponse(BaseModel):
"""Response model for speech generation"""
model_config = ConfigDict(
json_schema_extra={
"example": {
"audio_path": "temp_audio/tts_e9b78164.wav"
}
}
)
audio_path: str = Field(..., description="Path to generated audio file")
class ExtractTopicResponse(BaseModel):
"""Response model for topic extraction"""
model_config = ConfigDict(
json_schema_extra={
"example": {
"text": "Governments should subsidize electric cars to encourage adoption.",
"topic": "government subsidies for electric vehicle adoption",
"timestamp": "2024-01-01T12:00:00"
}
}
)
text: str = Field(..., description="The input text")
topic: str = Field(..., description="The extracted topic")
timestamp: Optional[str] = Field(None, description="Timestamp of extraction")
class VoiceChatResponse(BaseModel):
"""Response model for voice chat"""
model_config = ConfigDict(
json_schema_extra={
"example": {
"user_input": "What is climate change?",
"conversation_id": "uuid-here",
"response": "Climate change refers to long-term changes in global temperatures and weather patterns.",
"timestamp": "2024-01-01T12:00:00"
}
}
)
user_input: str = Field(..., description="The user's input text")
conversation_id: Optional[str] = Field(None, description="The conversation ID")
response: str = Field(..., description="The chatbot's response")
timestamp: Optional[str] = Field(None, description="Timestamp of response")
class ResourceInfo(BaseModel):
"""Information about an MCP resource"""
uri: str
name: str
description: Optional[str] = None
mime_type: str
class ToolInfo(BaseModel):
"""Information about an MCP tool"""
name: str
description: str
input_schema: Dict[str, Any]
class ResourceListResponse(BaseModel):
"""Response for listing resources"""
resources: List[ResourceInfo]
count: int
class ToolListResponse(BaseModel):
"""Response for listing tools"""
tools: List[ToolInfo]
count: int |