Yassine Mhirsi
first test
9db766f
"""Pydantic schemas for stance detection endpoints"""
from pydantic import BaseModel, Field, ConfigDict
from typing import List
class StanceRequest(BaseModel):
"""Request model for stance prediction"""
model_config = ConfigDict(
json_schema_extra={
"example": {
"topic": "Assisted suicide should be a criminal offence",
"argument": "People have the right to choose how they end their lives"
}
}
)
topic: str = Field(..., min_length=5, max_length=500,
description="The debate topic or statement")
argument: str = Field(..., min_length=5, max_length=1000,
description="The argument text to classify")
class StanceResponse(BaseModel):
"""Response model for stance prediction"""
model_config = ConfigDict(
json_schema_extra={
"example": {
"topic": "Assisted suicide should be a criminal offence",
"argument": "People have the right to choose how they end their lives",
"predicted_stance": "CON",
"confidence": 0.9234,
"probability_con": 0.9234,
"probability_pro": 0.0766,
"timestamp": "2024-11-15T10:30:00"
}
}
)
topic: str
argument: str
predicted_stance: str = Field(..., description="PRO or CON")
confidence: float = Field(..., ge=0.0, le=1.0)
probability_con: float
probability_pro: float
timestamp: str
class BatchStanceRequest(BaseModel):
"""Request model for batch predictions"""
items: List[StanceRequest] = Field(..., max_length=50,
description="List of topic-argument pairs (max 50)")
class BatchStanceResponse(BaseModel):
"""Response model for batch predictions"""
results: List[StanceResponse]
total_processed: int