Spaces:
Sleeping
Sleeping
| from typing import Any, Union | |
| import gym | |
| import numpy as np | |
| from ding.envs.env import BaseEnv, BaseEnvTimestep | |
| class DemoEnv(BaseEnv): | |
| def __init__(self, cfg: dict) -> None: | |
| self._closed = True | |
| # It is highly recommended to implement these three spaces | |
| self._observation_space = gym.spaces.Dict( | |
| { | |
| "demo_dict": gym.spaces.Tuple( | |
| [ | |
| gym.spaces.Box(low=-10., high=10., shape=(4, ), dtype=np.float32), | |
| gym.spaces.Box(low=-100., high=100., shape=(1, ), dtype=np.float32) | |
| ] | |
| ) | |
| } | |
| ) | |
| self._action_space = gym.spaces.Discrete(5) | |
| self._reward_space = gym.spaces.Box(low=0.0, high=1.0, shape=(1, ), dtype=np.float32) | |
| def observation_space(self) -> gym.spaces.Space: | |
| return self._observation_space | |
| def action_space(self) -> gym.spaces.Space: | |
| return self._action_space | |
| def reward_space(self) -> gym.spaces.Space: | |
| return self._reward_space | |
| def reset(self) -> Any: | |
| """ | |
| Overview: | |
| Resets the env to an initial state and returns an initial observation. Abstract Method from ``gym.Env``. | |
| """ | |
| self._step_count = 0 | |
| self._env = "A real environment" | |
| self._closed = False | |
| return self.observation_space.sample() | |
| def close(self) -> None: | |
| self._closed = True | |
| def step(self, action: Any) -> 'BaseEnv.timestep': | |
| self._step_count += 1 | |
| obs = self.observation_space.sample() | |
| rew = self.reward_space.sample() | |
| if self._step_count == 30: | |
| self._step_count = 0 | |
| done = True | |
| else: | |
| done = False | |
| info = {} | |
| if done: | |
| info['eval_episode_return'] = self.reward_space.sample() * 30 | |
| return BaseEnvTimestep(obs, rew, done, info) | |
| def seed(self, seed: int) -> None: | |
| self._seed = seed | |
| def random_action(self) -> Union[np.ndarray, int]: | |
| return self.action_space.sample() | |
| def __repr__(self) -> str: | |
| return "Demo Env for env_implementation_test.py" | |