Spaces:
Sleeping
Sleeping
| from typing import List, Dict, Any, Tuple, Union | |
| from collections import namedtuple | |
| import torch | |
| from ding.rl_utils import a2c_data, a2c_error, get_gae_with_default_last_value, get_train_sample, \ | |
| a2c_error_continuous | |
| from ding.torch_utils import Adam, to_device | |
| from ding.model import model_wrap | |
| from ding.utils import POLICY_REGISTRY, split_data_generator | |
| from ding.utils.data import default_collate, default_decollate | |
| from .base_policy import Policy | |
| from .common_utils import default_preprocess_learn | |
| class A2CPolicy(Policy): | |
| r""" | |
| Overview: | |
| Policy class of A2C algorithm. | |
| """ | |
| config = dict( | |
| # (string) RL policy register name (refer to function "register_policy"). | |
| type='a2c', | |
| # (bool) Whether to use cuda for network. | |
| cuda=False, | |
| # (bool) whether use on-policy training pipeline(behaviour policy and training policy are the same) | |
| on_policy=True, # for a2c strictly on policy algorithm, this line should not be seen by users | |
| priority=False, | |
| # (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True. | |
| priority_IS_weight=False, | |
| # (str) Which kind of action space used in PPOPolicy, ['discrete', 'continuous'] | |
| action_space='discrete', | |
| learn=dict( | |
| # (int) for a2c, update_per_collect must be 1. | |
| update_per_collect=1, # fixed value, this line should not be modified by users | |
| batch_size=64, | |
| learning_rate=0.001, | |
| # (List[float]) | |
| betas=(0.9, 0.999), | |
| # (float) | |
| eps=1e-8, | |
| # (float) | |
| grad_norm=0.5, | |
| # ============================================================== | |
| # The following configs is algorithm-specific | |
| # ============================================================== | |
| # (float) loss weight of the value network, the weight of policy network is set to 1 | |
| value_weight=0.5, | |
| # (float) loss weight of the entropy regularization, the weight of policy network is set to 1 | |
| entropy_weight=0.01, | |
| # (bool) Whether to normalize advantage. Default to False. | |
| adv_norm=False, | |
| ignore_done=False, | |
| ), | |
| collect=dict( | |
| # (int) collect n_sample data, train model n_iteration times | |
| # n_sample=80, | |
| unroll_len=1, | |
| # ============================================================== | |
| # The following configs is algorithm-specific | |
| # ============================================================== | |
| # (float) discount factor for future reward, defaults int [0, 1] | |
| discount_factor=0.9, | |
| # (float) the trade-off factor lambda to balance 1step td and mc | |
| gae_lambda=0.95, | |
| ), | |
| eval=dict(), | |
| ) | |
| def default_model(self) -> Tuple[str, List[str]]: | |
| return 'vac', ['ding.model.template.vac'] | |
| def _init_learn(self) -> None: | |
| r""" | |
| Overview: | |
| Learn mode init method. Called by ``self.__init__``. | |
| Init the optimizer, algorithm config, main and target models. | |
| """ | |
| assert self._cfg.action_space in ["continuous", "discrete"] | |
| # Optimizer | |
| self._optimizer = Adam( | |
| self._model.parameters(), | |
| lr=self._cfg.learn.learning_rate, | |
| betas=self._cfg.learn.betas, | |
| eps=self._cfg.learn.eps | |
| ) | |
| # Algorithm config | |
| self._priority = self._cfg.priority | |
| self._priority_IS_weight = self._cfg.priority_IS_weight | |
| self._value_weight = self._cfg.learn.value_weight | |
| self._entropy_weight = self._cfg.learn.entropy_weight | |
| self._adv_norm = self._cfg.learn.adv_norm | |
| self._grad_norm = self._cfg.learn.grad_norm | |
| # Main and target models | |
| self._learn_model = model_wrap(self._model, wrapper_name='base') | |
| self._learn_model.reset() | |
| def _forward_learn(self, data: dict) -> Dict[str, Any]: | |
| r""" | |
| Overview: | |
| Forward and backward function of learn mode. | |
| Arguments: | |
| - data (:obj:`dict`): Dict type data, including at least ['obs', 'action', 'reward', 'next_obs','adv'] | |
| Returns: | |
| - info_dict (:obj:`Dict[str, Any]`): Including current lr and loss. | |
| """ | |
| data = default_preprocess_learn(data, ignore_done=self._cfg.learn.ignore_done, use_nstep=False) | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| self._learn_model.train() | |
| for batch in split_data_generator(data, self._cfg.learn.batch_size, shuffle=True): | |
| # forward | |
| output = self._learn_model.forward(batch['obs'], mode='compute_actor_critic') | |
| adv = batch['adv'] | |
| return_ = batch['value'] + adv | |
| if self._adv_norm: | |
| # norm adv in total train_batch | |
| adv = (adv - adv.mean()) / (adv.std() + 1e-8) | |
| error_data = a2c_data(output['logit'], batch['action'], output['value'], adv, return_, batch['weight']) | |
| # Calculate A2C loss | |
| if self._action_space == 'continuous': | |
| a2c_loss = a2c_error_continuous(error_data) | |
| elif self._action_space == 'discrete': | |
| a2c_loss = a2c_error(error_data) | |
| wv, we = self._value_weight, self._entropy_weight | |
| total_loss = a2c_loss.policy_loss + wv * a2c_loss.value_loss - we * a2c_loss.entropy_loss | |
| # ==================== | |
| # A2C-learning update | |
| # ==================== | |
| self._optimizer.zero_grad() | |
| total_loss.backward() | |
| grad_norm = torch.nn.utils.clip_grad_norm_( | |
| list(self._learn_model.parameters()), | |
| max_norm=self._grad_norm, | |
| ) | |
| self._optimizer.step() | |
| # ============= | |
| # after update | |
| # ============= | |
| # only record last updates information in logger | |
| return { | |
| 'cur_lr': self._optimizer.param_groups[0]['lr'], | |
| 'total_loss': total_loss.item(), | |
| 'policy_loss': a2c_loss.policy_loss.item(), | |
| 'value_loss': a2c_loss.value_loss.item(), | |
| 'entropy_loss': a2c_loss.entropy_loss.item(), | |
| 'adv_abs_max': adv.abs().max().item(), | |
| 'grad_norm': grad_norm, | |
| } | |
| def _state_dict_learn(self) -> Dict[str, Any]: | |
| return { | |
| 'model': self._learn_model.state_dict(), | |
| 'optimizer': self._optimizer.state_dict(), | |
| } | |
| def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: | |
| self._learn_model.load_state_dict(state_dict['model']) | |
| self._optimizer.load_state_dict(state_dict['optimizer']) | |
| def _init_collect(self) -> None: | |
| r""" | |
| Overview: | |
| Collect mode init method. Called by ``self.__init__``. | |
| Init traj and unroll length, collect model. | |
| """ | |
| assert self._cfg.action_space in ["continuous", "discrete"] | |
| self._unroll_len = self._cfg.collect.unroll_len | |
| self._action_space = self._cfg.action_space | |
| if self._action_space == 'continuous': | |
| self._collect_model = model_wrap(self._model, wrapper_name='reparam_sample') | |
| elif self._action_space == 'discrete': | |
| self._collect_model = model_wrap(self._model, wrapper_name='multinomial_sample') | |
| self._collect_model.reset() | |
| # Algorithm | |
| self._gamma = self._cfg.collect.discount_factor | |
| self._gae_lambda = self._cfg.collect.gae_lambda | |
| def _forward_collect(self, data: dict) -> dict: | |
| r""" | |
| Overview: | |
| Forward function of collect mode. | |
| Arguments: | |
| - data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \ | |
| values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer. | |
| Returns: | |
| - output (:obj:`Dict[int, Any]`): Dict type data, including at least inferred action according to input obs. | |
| ReturnsKeys | |
| - necessary: ``action`` | |
| """ | |
| data_id = list(data.keys()) | |
| data = default_collate(list(data.values())) | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| self._collect_model.eval() | |
| with torch.no_grad(): | |
| output = self._collect_model.forward(data, mode='compute_actor_critic') | |
| if self._cuda: | |
| output = to_device(output, 'cpu') | |
| output = default_decollate(output) | |
| return {i: d for i, d in zip(data_id, output)} | |
| def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict: | |
| r""" | |
| Overview: | |
| Generate dict type transition data from inputs. | |
| Arguments: | |
| - obs (:obj:`Any`): Env observation | |
| - model_output (:obj:`dict`): Output of collect model, including at least ['action'] | |
| - timestep (:obj:`namedtuple`): Output after env step, including at least ['obs', 'reward', 'done'] \ | |
| (here 'obs' indicates obs after env step). | |
| Returns: | |
| - transition (:obj:`dict`): Dict type transition data. | |
| """ | |
| transition = { | |
| 'obs': obs, | |
| 'next_obs': timestep.obs, | |
| 'action': model_output['action'], | |
| 'value': model_output['value'], | |
| 'reward': timestep.reward, | |
| 'done': timestep.done, | |
| } | |
| return transition | |
| def _get_train_sample(self, data: list) -> Union[None, List[Any]]: | |
| r""" | |
| Overview: | |
| Get the trajectory and the n step return data, then sample from the n_step return data | |
| Arguments: | |
| - data (:obj:`list`): The trajectory's buffer list | |
| Returns: | |
| - samples (:obj:`dict`): The training samples generated | |
| """ | |
| data = get_gae_with_default_last_value( | |
| data, | |
| data[-1]['done'], | |
| gamma=self._gamma, | |
| gae_lambda=self._gae_lambda, | |
| cuda=self._cuda, | |
| ) | |
| return get_train_sample(data, self._unroll_len) | |
| def _init_eval(self) -> None: | |
| r""" | |
| Overview: | |
| Evaluate mode init method. Called by ``self.__init__``. | |
| Init eval model with argmax strategy. | |
| """ | |
| assert self._cfg.action_space in ["continuous", "discrete"] | |
| self._action_space = self._cfg.action_space | |
| if self._action_space == 'continuous': | |
| self._eval_model = model_wrap(self._model, wrapper_name='deterministic_sample') | |
| elif self._action_space == 'discrete': | |
| self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample') | |
| self._eval_model.reset() | |
| def _forward_eval(self, data: dict) -> dict: | |
| r""" | |
| Overview: | |
| Forward function of eval mode, similar to ``self._forward_collect``. | |
| Arguments: | |
| - data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \ | |
| values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer. | |
| Returns: | |
| - output (:obj:`Dict[int, Any]`): The dict of predicting action for the interaction with env. | |
| ReturnsKeys | |
| - necessary: ``action`` | |
| """ | |
| data_id = list(data.keys()) | |
| data = default_collate(list(data.values())) | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| self._eval_model.eval() | |
| with torch.no_grad(): | |
| output = self._eval_model.forward(data, mode='compute_actor') | |
| if self._cuda: | |
| output = to_device(output, 'cpu') | |
| output = default_decollate(output) | |
| return {i: d for i, d in zip(data_id, output)} | |
| def _monitor_vars_learn(self) -> List[str]: | |
| return super()._monitor_vars_learn() + ['policy_loss', 'value_loss', 'entropy_loss', 'adv_abs_max', 'grad_norm'] | |