Spaces:
Sleeping
Sleeping
| from typing import List, Dict, Any, Tuple | |
| from collections import namedtuple | |
| import copy | |
| import torch | |
| from ding.torch_utils import Adam, to_device, ContrastiveLoss | |
| from ding.rl_utils import q_nstep_td_data, q_nstep_td_error, get_nstep_return_data, get_train_sample | |
| from ding.model import model_wrap | |
| from ding.utils import POLICY_REGISTRY | |
| from ding.utils.data import default_collate, default_decollate | |
| from .base_policy import Policy | |
| from .common_utils import default_preprocess_learn | |
| class DQNPolicy(Policy): | |
| """ | |
| Overview: | |
| Policy class of DQN algorithm, extended by Double DQN/Dueling DQN/PER/multi-step TD. | |
| Config: | |
| == ===================== ======== ============== ======================================= ======================= | |
| ID Symbol Type Default Value Description Other(Shape) | |
| == ===================== ======== ============== ======================================= ======================= | |
| 1 ``type`` str dqn | RL policy register name, refer to | This arg is optional, | |
| | registry ``POLICY_REGISTRY`` | a placeholder | |
| 2 ``cuda`` bool False | Whether to use cuda for network | This arg can be diff- | |
| | erent from modes | |
| 3 ``on_policy`` bool False | Whether the RL algorithm is on-policy | |
| | or off-policy | |
| 4 ``priority`` bool False | Whether use priority(PER) | Priority sample, | |
| | update priority | |
| 5 | ``priority_IS`` bool False | Whether use Importance Sampling | |
| | ``_weight`` | Weight to correct biased update. If | |
| | True, priority must be True. | |
| 6 | ``discount_`` float 0.97, | Reward's future discount factor, aka. | May be 1 when sparse | |
| | ``factor`` [0.95, 0.999] | gamma | reward env | |
| 7 ``nstep`` int 1, | N-step reward discount sum for target | |
| [3, 5] | q_value estimation | |
| 8 | ``model.dueling`` bool True | dueling head architecture | |
| 9 | ``model.encoder`` list [32, 64, | Sequence of ``hidden_size`` of | default kernel_size | |
| | ``_hidden`` (int) 64, 128] | subsequent conv layers and the | is [8, 4, 3] | |
| | ``_size_list`` | final dense layer. | default stride is | |
| | [4, 2 ,1] | |
| 10 | ``model.dropout`` float None | Dropout rate for dropout layers. | [0,1] | |
| | If set to ``None`` | |
| | means no dropout | |
| 11 | ``learn.update`` int 3 | How many updates(iterations) to train | This args can be vary | |
| | ``per_collect`` | after collector's one collection. | from envs. Bigger val | |
| | Only valid in serial training | means more off-policy | |
| 12 | ``learn.batch_`` int 64 | The number of samples of an iteration | |
| | ``size`` | |
| 13 | ``learn.learning`` float 0.001 | Gradient step length of an iteration. | |
| | ``_rate`` | |
| 14 | ``learn.target_`` int 100 | Frequence of target network update. | Hard(assign) update | |
| | ``update_freq`` | |
| 15 | ``learn.target_`` float 0.005 | Frequence of target network update. | Soft(assign) update | |
| | ``theta`` | Only one of [target_update_freq, | |
| | | target_theta] should be set | |
| 16 | ``learn.ignore_`` bool False | Whether ignore done for target value | Enable it for some | |
| | ``done`` | calculation. | fake termination env | |
| 17 ``collect.n_sample`` int [8, 128] | The number of training samples of a | It varies from | |
| | call of collector. | different envs | |
| 18 ``collect.n_episode`` int 8 | The number of training episodes of a | only one of [n_sample | |
| | call of collector | ,n_episode] should | |
| | | be set | |
| 19 | ``collect.unroll`` int 1 | unroll length of an iteration | In RNN, unroll_len>1 | |
| | ``_len`` | |
| 20 | ``other.eps.type`` str exp | exploration rate decay type | Support ['exp', | |
| | 'linear']. | |
| 21 | ``other.eps.`` float 0.95 | start value of exploration rate | [0,1] | |
| | ``start`` | |
| 22 | ``other.eps.`` float 0.1 | end value of exploration rate | [0,1] | |
| | ``end`` | |
| 23 | ``other.eps.`` int 10000 | decay length of exploration | greater than 0. set | |
| | ``decay`` | decay=10000 means | |
| | the exploration rate | |
| | decay from start | |
| | value to end value | |
| | during decay length. | |
| == ===================== ======== ============== ======================================= ======================= | |
| """ | |
| config = dict( | |
| # (str) RL policy register name (refer to function "POLICY_REGISTRY"). | |
| type='dqn', | |
| # (bool) Whether to use cuda in policy. | |
| cuda=False, | |
| # (bool) Whether learning policy is the same as collecting data policy(on-policy). | |
| on_policy=False, | |
| # (bool) Whether to enable priority experience sample. | |
| priority=False, | |
| # (bool) Whether to use Importance Sampling Weight to correct biased update. If True, priority must be True. | |
| priority_IS_weight=False, | |
| # (float) Discount factor(gamma) for returns. | |
| discount_factor=0.97, | |
| # (int) The number of step for calculating target q_value. | |
| nstep=1, | |
| model=dict( | |
| # (list(int)) Sequence of ``hidden_size`` of subsequent conv layers and the final dense layer. | |
| encoder_hidden_size_list=[128, 128, 64], | |
| ), | |
| # learn_mode config | |
| learn=dict( | |
| # (int) How many updates(iterations) to train after collector's one collection. | |
| # Bigger "update_per_collect" means bigger off-policy. | |
| # collect data -> update policy-> collect data -> ... | |
| update_per_collect=3, | |
| # (int) How many samples in a training batch. | |
| batch_size=64, | |
| # (float) The step size of gradient descent. | |
| learning_rate=0.001, | |
| # (int) Frequence of target network update. | |
| # Only one of [target_update_freq, target_theta] should be set. | |
| target_update_freq=100, | |
| # (float) : Used for soft update of the target network. | |
| # aka. Interpolation factor in EMA update for target network. | |
| # Only one of [target_update_freq, target_theta] should be set. | |
| target_theta=0.005, | |
| # (bool) Whether ignore done(usually for max step termination env). | |
| # Note: Gym wraps the MuJoCo envs by default with TimeLimit environment wrappers. | |
| # These limit HalfCheetah, and several other MuJoCo envs, to max length of 1000. | |
| # However, interaction with HalfCheetah always gets done with done is False, | |
| # Since we inplace done==True with done==False to keep | |
| # TD-error accurate computation(``gamma * (1 - done) * next_v + reward``), | |
| # when the episode step is greater than max episode step. | |
| ignore_done=False, | |
| ), | |
| # collect_mode config | |
| collect=dict( | |
| # (int) How many training samples collected in one collection procedure. | |
| # Only one of [n_sample, n_episode] shoule be set. | |
| n_sample=8, | |
| # (int) Split episodes or trajectories into pieces with length `unroll_len`. | |
| unroll_len=1, | |
| ), | |
| eval=dict(), # for compability | |
| # other config | |
| other=dict( | |
| # Epsilon greedy with decay. | |
| eps=dict( | |
| # (str) Decay type. Support ['exp', 'linear']. | |
| type='exp', | |
| # (float) Epsilon start value. | |
| start=0.95, | |
| # (float) Epsilon end value. | |
| end=0.1, | |
| # (int) Decay length(env step). | |
| decay=10000, | |
| ), | |
| replay_buffer=dict( | |
| # (int) Maximum size of replay buffer. Usually, larger buffer size is better. | |
| replay_buffer_size=10000, | |
| ), | |
| ), | |
| ) | |
| def default_model(self) -> Tuple[str, List[str]]: | |
| """ | |
| Overview: | |
| Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \ | |
| automatically call this method to get the default model setting and create model. | |
| Returns: | |
| - model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names. | |
| .. note:: | |
| The user can define and use customized network model but must obey the same inferface definition indicated \ | |
| by import_names path. For example about DQN, its registered name is ``dqn`` and the import_names is \ | |
| ``ding.model.template.q_learning``. | |
| """ | |
| return 'dqn', ['ding.model.template.q_learning'] | |
| def _init_learn(self) -> None: | |
| """ | |
| Overview: | |
| Initialize the learn mode of policy, including related attributes and modules. For DQN, it mainly contains \ | |
| optimizer, algorithm-specific arguments such as nstep and gamma, main and target model. | |
| This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``. | |
| .. note:: | |
| For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \ | |
| and ``_load_state_dict_learn`` methods. | |
| .. note:: | |
| For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method. | |
| .. note:: | |
| If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \ | |
| with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``. | |
| """ | |
| self._priority = self._cfg.priority | |
| self._priority_IS_weight = self._cfg.priority_IS_weight | |
| # Optimizer | |
| self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate) | |
| self._gamma = self._cfg.discount_factor | |
| self._nstep = self._cfg.nstep | |
| # use model_wrapper for specialized demands of different modes | |
| self._target_model = copy.deepcopy(self._model) | |
| if 'target_update_freq' in self._cfg.learn: | |
| self._target_model = model_wrap( | |
| self._target_model, | |
| wrapper_name='target', | |
| update_type='assign', | |
| update_kwargs={'freq': self._cfg.learn.target_update_freq} | |
| ) | |
| elif 'target_theta' in self._cfg.learn: | |
| self._target_model = model_wrap( | |
| self._target_model, | |
| wrapper_name='target', | |
| update_type='momentum', | |
| update_kwargs={'theta': self._cfg.learn.target_theta} | |
| ) | |
| else: | |
| raise RuntimeError("DQN needs target network, please either indicate target_update_freq or target_theta") | |
| self._learn_model = model_wrap(self._model, wrapper_name='argmax_sample') | |
| self._learn_model.reset() | |
| self._target_model.reset() | |
| def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]: | |
| """ | |
| Overview: | |
| Policy forward function of learn mode (training policy and updating parameters). Forward means \ | |
| that the policy inputs some training batch data from the replay buffer and then returns the output \ | |
| result, including various training information such as loss, q value, priority. | |
| Arguments: | |
| - data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including a batch of \ | |
| training samples. For each element in list, the key of the dict is the name of data items and the \ | |
| value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \ | |
| combinations. In the ``_forward_learn`` method, data often need to first be stacked in the batch \ | |
| dimension by some utility functions such as ``default_preprocess_learn``. \ | |
| For DQN, each element in list is a dict containing at least the following keys: ``obs``, ``action``, \ | |
| ``reward``, ``next_obs``, ``done``. Sometimes, it also contains other keys such as ``weight`` \ | |
| and ``value_gamma``. | |
| Returns: | |
| - info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \ | |
| recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \ | |
| detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method. | |
| .. note:: | |
| The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ | |
| For the data type that not supported, the main reason is that the corresponding model does not support it. \ | |
| You can implement you own model rather than use the default model. For more information, please raise an \ | |
| issue in GitHub repo and we will continue to follow up. | |
| .. note:: | |
| For more detailed examples, please refer to our unittest for DQNPolicy: ``ding.policy.tests.test_dqn``. | |
| """ | |
| # Data preprocessing operations, such as stack data, cpu to cuda device | |
| data = default_preprocess_learn( | |
| data, | |
| use_priority=self._priority, | |
| use_priority_IS_weight=self._cfg.priority_IS_weight, | |
| ignore_done=self._cfg.learn.ignore_done, | |
| use_nstep=True | |
| ) | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| # Q-learning forward | |
| self._learn_model.train() | |
| self._target_model.train() | |
| # Current q value (main model) | |
| q_value = self._learn_model.forward(data['obs'])['logit'] | |
| # Target q value | |
| with torch.no_grad(): | |
| target_q_value = self._target_model.forward(data['next_obs'])['logit'] | |
| # Max q value action (main model), i.e. Double DQN | |
| target_q_action = self._learn_model.forward(data['next_obs'])['action'] | |
| data_n = q_nstep_td_data( | |
| q_value, target_q_value, data['action'], target_q_action, data['reward'], data['done'], data['weight'] | |
| ) | |
| value_gamma = data.get('value_gamma') | |
| loss, td_error_per_sample = q_nstep_td_error(data_n, self._gamma, nstep=self._nstep, value_gamma=value_gamma) | |
| # Update network parameters | |
| self._optimizer.zero_grad() | |
| loss.backward() | |
| if self._cfg.multi_gpu: | |
| self.sync_gradients(self._learn_model) | |
| self._optimizer.step() | |
| # Postprocessing operations, such as updating target model, return logged values and priority. | |
| self._target_model.update(self._learn_model.state_dict()) | |
| return { | |
| 'cur_lr': self._optimizer.defaults['lr'], | |
| 'total_loss': loss.item(), | |
| 'q_value': q_value.mean().item(), | |
| 'target_q_value': target_q_value.mean().item(), | |
| 'priority': td_error_per_sample.abs().tolist(), | |
| # Only discrete action satisfying len(data['action'])==1 can return this and draw histogram on tensorboard. | |
| # '[histogram]action_distribution': data['action'], | |
| } | |
| def _monitor_vars_learn(self) -> List[str]: | |
| """ | |
| Overview: | |
| Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \ | |
| as text logger, tensorboard logger, will use these keys to save the corresponding data. | |
| Returns: | |
| - necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged. | |
| """ | |
| return ['cur_lr', 'total_loss', 'q_value', 'target_q_value'] | |
| def _state_dict_learn(self) -> Dict[str, Any]: | |
| """ | |
| Overview: | |
| Return the state_dict of learn mode, usually including model, target_model and optimizer. | |
| Returns: | |
| - state_dict (:obj:`Dict[str, Any]`): The dict of current policy learn state, for saving and restoring. | |
| """ | |
| return { | |
| 'model': self._learn_model.state_dict(), | |
| 'target_model': self._target_model.state_dict(), | |
| 'optimizer': self._optimizer.state_dict(), | |
| } | |
| def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: | |
| """ | |
| Overview: | |
| Load the state_dict variable into policy learn mode. | |
| Arguments: | |
| - state_dict (:obj:`Dict[str, Any]`): The dict of policy learn state saved before. | |
| .. tip:: | |
| If you want to only load some parts of model, you can simply set the ``strict`` argument in \ | |
| load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \ | |
| complicated operation. | |
| """ | |
| self._learn_model.load_state_dict(state_dict['model']) | |
| self._target_model.load_state_dict(state_dict['target_model']) | |
| self._optimizer.load_state_dict(state_dict['optimizer']) | |
| def _init_collect(self) -> None: | |
| """ | |
| Overview: | |
| Initialize the collect mode of policy, including related attributes and modules. For DQN, it contains the \ | |
| collect_model to balance the exploration and exploitation with epsilon-greedy sample mechanism, and other \ | |
| algorithm-specific arguments such as unroll_len and nstep. | |
| This method will be called in ``__init__`` method if ``collect`` field is in ``enable_field``. | |
| .. note:: | |
| If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \ | |
| with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``. | |
| .. tip:: | |
| Some variables need to initialize independently in different modes, such as gamma and nstep in DQN. This \ | |
| design is for the convenience of parallel execution of different policy modes. | |
| """ | |
| self._unroll_len = self._cfg.collect.unroll_len | |
| self._gamma = self._cfg.discount_factor # necessary for parallel | |
| self._nstep = self._cfg.nstep # necessary for parallel | |
| self._collect_model = model_wrap(self._model, wrapper_name='eps_greedy_sample') | |
| self._collect_model.reset() | |
| def _forward_collect(self, data: Dict[int, Any], eps: float) -> Dict[int, Any]: | |
| """ | |
| Overview: | |
| Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \ | |
| that the policy gets some necessary data (mainly observation) from the envs and then returns the output \ | |
| data, such as the action to interact with the envs. Besides, this policy also needs ``eps`` argument for \ | |
| exploration, i.e., classic epsilon-greedy exploration strategy. | |
| Arguments: | |
| - data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \ | |
| key of the dict is environment id and the value is the corresponding data of the env. | |
| - eps (:obj:`float`): The epsilon value for exploration. | |
| Returns: | |
| - output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \ | |
| other necessary data for learn mode defined in ``self._process_transition`` method. The key of the \ | |
| dict is the same as the input data, i.e. environment id. | |
| .. note:: | |
| The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ | |
| For the data type that not supported, the main reason is that the corresponding model does not support it. \ | |
| You can implement you own model rather than use the default model. For more information, please raise an \ | |
| issue in GitHub repo and we will continue to follow up. | |
| .. note:: | |
| For more detailed examples, please refer to our unittest for DQNPolicy: ``ding.policy.tests.test_dqn``. | |
| """ | |
| data_id = list(data.keys()) | |
| data = default_collate(list(data.values())) | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| self._collect_model.eval() | |
| with torch.no_grad(): | |
| output = self._collect_model.forward(data, eps=eps) | |
| if self._cuda: | |
| output = to_device(output, 'cpu') | |
| output = default_decollate(output) | |
| return {i: d for i, d in zip(data_id, output)} | |
| def _get_train_sample(self, transitions: List[Dict[str, Any]]) -> List[Dict[str, Any]]: | |
| """ | |
| Overview: | |
| For a given trajectory (transitions, a list of transition) data, process it into a list of sample that \ | |
| can be used for training directly. In DQN with nstep TD, a train sample is a processed transition. \ | |
| This method is usually used in collectors to execute necessary \ | |
| RL data preprocessing before training, which can help learner amortize revelant time consumption. \ | |
| In addition, you can also implement this method as an identity function and do the data processing \ | |
| in ``self._forward_learn`` method. | |
| Arguments: | |
| - transitions (:obj:`List[Dict[str, Any]`): The trajectory data (a list of transition), each element is \ | |
| in the same format as the return value of ``self._process_transition`` method. | |
| Returns: | |
| - samples (:obj:`List[Dict[str, Any]]`): The processed train samples, each element is similar in format \ | |
| to input transitions, but may contain more data for training, such as nstep reward and target obs. | |
| """ | |
| transitions = get_nstep_return_data(transitions, self._nstep, gamma=self._gamma) | |
| return get_train_sample(transitions, self._unroll_len) | |
| def _process_transition(self, obs: torch.Tensor, policy_output: Dict[str, torch.Tensor], | |
| timestep: namedtuple) -> Dict[str, torch.Tensor]: | |
| """ | |
| Overview: | |
| Process and pack one timestep transition data into a dict, which can be directly used for training and \ | |
| saved in replay buffer. For DQN, it contains obs, next_obs, action, reward, done. | |
| Arguments: | |
| - obs (:obj:`torch.Tensor`): The env observation of current timestep, such as stacked 2D image in Atari. | |
| - policy_output (:obj:`Dict[str, torch.Tensor]`): The output of the policy network with the observation \ | |
| as input. For DQN, it contains the action and the logit (q_value) of the action. | |
| - timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step method, \ | |
| except all the elements have been transformed into tensor data. Usually, it contains the next obs, \ | |
| reward, done, info, etc. | |
| Returns: | |
| - transition (:obj:`Dict[str, torch.Tensor]`): The processed transition data of the current timestep. | |
| """ | |
| transition = { | |
| 'obs': obs, | |
| 'next_obs': timestep.obs, | |
| 'action': policy_output['action'], | |
| 'reward': timestep.reward, | |
| 'done': timestep.done, | |
| } | |
| return transition | |
| def _init_eval(self) -> None: | |
| """ | |
| Overview: | |
| Initialize the eval mode of policy, including related attributes and modules. For DQN, it contains the \ | |
| eval model to greedily select action with argmax q_value mechanism. | |
| This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``. | |
| .. note:: | |
| If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \ | |
| with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``. | |
| """ | |
| self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample') | |
| self._eval_model.reset() | |
| def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]: | |
| """ | |
| Overview: | |
| Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \ | |
| means that the policy gets some necessary data (mainly observation) from the envs and then returns the \ | |
| action to interact with the envs. | |
| Arguments: | |
| - data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \ | |
| key of the dict is environment id and the value is the corresponding data of the env. | |
| Returns: | |
| - output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \ | |
| key of the dict is the same as the input data, i.e. environment id. | |
| .. note:: | |
| The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ | |
| For the data type that not supported, the main reason is that the corresponding model does not support it. \ | |
| You can implement you own model rather than use the default model. For more information, please raise an \ | |
| issue in GitHub repo and we will continue to follow up. | |
| .. note:: | |
| For more detailed examples, please refer to our unittest for DQNPolicy: ``ding.policy.tests.test_dqn``. | |
| """ | |
| data_id = list(data.keys()) | |
| data = default_collate(list(data.values())) | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| self._eval_model.eval() | |
| with torch.no_grad(): | |
| output = self._eval_model.forward(data) | |
| if self._cuda: | |
| output = to_device(output, 'cpu') | |
| output = default_decollate(output) | |
| return {i: d for i, d in zip(data_id, output)} | |
| def calculate_priority(self, data: Dict[int, Any], update_target_model: bool = False) -> Dict[str, Any]: | |
| """ | |
| Overview: | |
| Calculate priority for replay buffer. | |
| Arguments: | |
| - data (:obj:`Dict[str, Any]`): Dict type data, a batch of data for training. | |
| - update_target_model (:obj:`bool`): Whether to update target model. | |
| Returns: | |
| - priority (:obj:`Dict[str, Any]`): Dict type priority data, values are python scalar or a list of scalars. | |
| ArgumentsKeys: | |
| - necessary: ``obs``, ``action``, ``reward``, ``next_obs``, ``done`` | |
| - optional: ``value_gamma`` | |
| ReturnsKeys: | |
| - necessary: ``priority`` | |
| """ | |
| if update_target_model: | |
| self._target_model.load_state_dict(self._learn_model.state_dict()) | |
| data = default_preprocess_learn( | |
| data, | |
| use_priority=False, | |
| use_priority_IS_weight=False, | |
| ignore_done=self._cfg.learn.ignore_done, | |
| use_nstep=True | |
| ) | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| # ==================== | |
| # Q-learning forward | |
| # ==================== | |
| self._learn_model.eval() | |
| self._target_model.eval() | |
| with torch.no_grad(): | |
| # Current q value (main model) | |
| q_value = self._learn_model.forward(data['obs'])['logit'] | |
| # Target q value | |
| target_q_value = self._target_model.forward(data['next_obs'])['logit'] | |
| # Max q value action (main model), i.e. Double DQN | |
| target_q_action = self._learn_model.forward(data['next_obs'])['action'] | |
| data_n = q_nstep_td_data( | |
| q_value, target_q_value, data['action'], target_q_action, data['reward'], data['done'], data['weight'] | |
| ) | |
| value_gamma = data.get('value_gamma') | |
| loss, td_error_per_sample = q_nstep_td_error( | |
| data_n, self._gamma, nstep=self._nstep, value_gamma=value_gamma | |
| ) | |
| return {'priority': td_error_per_sample.abs().tolist()} | |
| class DQNSTDIMPolicy(DQNPolicy): | |
| """ | |
| Overview: | |
| Policy class of DQN algorithm, extended by ST-DIM auxiliary objectives. | |
| ST-DIM paper link: https://arxiv.org/abs/1906.08226. | |
| Config: | |
| == ==================== ======== ============== ======================================== ======================= | |
| ID Symbol Type Default Value Description Other(Shape) | |
| == ==================== ======== ============== ======================================== ======================= | |
| 1 ``type`` str dqn_stdim | RL policy register name, refer to | This arg is optional, | |
| | registry ``POLICY_REGISTRY`` | a placeholder | |
| 2 ``cuda`` bool False | Whether to use cuda for network | This arg can be diff- | |
| | erent from modes | |
| 3 ``on_policy`` bool False | Whether the RL algorithm is on-policy | |
| | or off-policy | |
| 4 ``priority`` bool False | Whether use priority(PER) | Priority sample, | |
| | update priority | |
| 5 | ``priority_IS`` bool False | Whether use Importance Sampling Weight | |
| | ``_weight`` | to correct biased update. If True, | |
| | priority must be True. | |
| 6 | ``discount_`` float 0.97, | Reward's future discount factor, aka. | May be 1 when sparse | |
| | ``factor`` [0.95, 0.999] | gamma | reward env | |
| 7 ``nstep`` int 1, | N-step reward discount sum for target | |
| [3, 5] | q_value estimation | |
| 8 | ``learn.update`` int 3 | How many updates(iterations) to train | This args can be vary | |
| | ``per_collect`` | after collector's one collection. Only | from envs. Bigger val | |
| | valid in serial training | means more off-policy | |
| | ``_gpu`` | |
| 10 | ``learn.batch_`` int 64 | The number of samples of an iteration | |
| | ``size`` | |
| 11 | ``learn.learning`` float 0.001 | Gradient step length of an iteration. | |
| | ``_rate`` | |
| 12 | ``learn.target_`` int 100 | Frequence of target network update. | Hard(assign) update | |
| | ``update_freq`` | |
| 13 | ``learn.ignore_`` bool False | Whether ignore done for target value | Enable it for some | |
| | ``done`` | calculation. | fake termination env | |
| 14 ``collect.n_sample`` int [8, 128] | The number of training samples of a | It varies from | |
| | call of collector. | different envs | |
| 15 | ``collect.unroll`` int 1 | unroll length of an iteration | In RNN, unroll_len>1 | |
| | ``_len`` | |
| 16 | ``other.eps.type`` str exp | exploration rate decay type | Support ['exp', | |
| | 'linear']. | |
| 17 | ``other.eps.`` float 0.95 | start value of exploration rate | [0,1] | |
| | ``start`` | |
| 18 | ``other.eps.`` float 0.1 | end value of exploration rate | [0,1] | |
| | ``end`` | |
| 19 | ``other.eps.`` int 10000 | decay length of exploration | greater than 0. set | |
| | ``decay`` | decay=10000 means | |
| | the exploration rate | |
| | decay from start | |
| | value to end value | |
| | during decay length. | |
| 20 | ``aux_loss`` float 0.001 | the ratio of the auxiliary loss to | any real value, | |
| | ``_weight`` | the TD loss | typically in | |
| | [-0.1, 0.1]. | |
| == ==================== ======== ============== ======================================== ======================= | |
| """ | |
| config = dict( | |
| # (str) RL policy register name (refer to function "POLICY_REGISTRY"). | |
| type='dqn_stdim', | |
| # (bool) Whether to use cuda in policy. | |
| cuda=False, | |
| # (bool) Whether to learning policy is the same as collecting data policy (on-policy). | |
| on_policy=False, | |
| # (bool) Whether to enable priority experience sample. | |
| priority=False, | |
| # (bool) Whether to use Importance Sampling Weight to correct biased update. If True, priority must be True. | |
| priority_IS_weight=False, | |
| # (float) Discount factor(gamma) for returns. | |
| discount_factor=0.97, | |
| # (int) The number of step for calculating target q_value. | |
| nstep=1, | |
| # (float) The weight of auxiliary loss to main loss. | |
| aux_loss_weight=0.001, | |
| # learn_mode config | |
| learn=dict( | |
| # How many updates(iterations) to train after collector's one collection. | |
| # Bigger "update_per_collect" means bigger off-policy. | |
| # collect data -> update policy-> collect data -> ... | |
| update_per_collect=3, | |
| # (int) How many samples in a training batch. | |
| batch_size=64, | |
| # (float) The step size of gradient descent. | |
| learning_rate=0.001, | |
| # (int) Frequence of target network update. | |
| target_update_freq=100, | |
| # (bool) Whether ignore done(usually for max step termination env). | |
| ignore_done=False, | |
| ), | |
| # collect_mode config | |
| collect=dict( | |
| # (int) How many training samples collected in one collection procedure. | |
| # Only one of [n_sample, n_episode] shoule be set. | |
| # n_sample=8, | |
| # (int) Cut trajectories into pieces with length "unroll_len". | |
| unroll_len=1, | |
| ), | |
| eval=dict(), # for compability | |
| # other config | |
| other=dict( | |
| # Epsilon greedy with decay. | |
| eps=dict( | |
| # (str) Decay type. Support ['exp', 'linear']. | |
| type='exp', | |
| # (float) Epsilon start value. | |
| start=0.95, | |
| # (float) Epsilon end value. | |
| end=0.1, | |
| # (int) Decay length (env step). | |
| decay=10000, | |
| ), | |
| replay_buffer=dict( | |
| # (int) Maximum size of replay buffer. Usually, larger buffer size is better. | |
| replay_buffer_size=10000, | |
| ), | |
| ), | |
| ) | |
| def _init_learn(self) -> None: | |
| """ | |
| Overview: | |
| Initialize the learn mode of policy, including related attributes and modules. For DQNSTDIM, it first \ | |
| call super class's ``_init_learn`` method, then initialize extra auxiliary model, its optimizer, and the \ | |
| loss weight. This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``. | |
| .. note:: | |
| For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \ | |
| and ``_load_state_dict_learn`` methods. | |
| .. note:: | |
| For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method. | |
| .. note:: | |
| If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \ | |
| with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``. | |
| """ | |
| super()._init_learn() | |
| x_size, y_size = self._get_encoding_size() | |
| self._aux_model = ContrastiveLoss(x_size, y_size, **self._cfg.aux_model) | |
| if self._cuda: | |
| self._aux_model.cuda() | |
| self._aux_optimizer = Adam(self._aux_model.parameters(), lr=self._cfg.learn.learning_rate) | |
| self._aux_loss_weight = self._cfg.aux_loss_weight | |
| def _get_encoding_size(self) -> Tuple[Tuple[int], Tuple[int]]: | |
| """ | |
| Overview: | |
| Get the input encoding size of the ST-DIM axuiliary model. | |
| Returns: | |
| - info_dict (:obj:`Tuple[Tuple[int], Tuple[int]]`): The encoding size without the first (Batch) dimension. | |
| """ | |
| obs = self._cfg.model.obs_shape | |
| if isinstance(obs, int): | |
| obs = [obs] | |
| test_data = { | |
| "obs": torch.randn(1, *obs), | |
| "next_obs": torch.randn(1, *obs), | |
| } | |
| if self._cuda: | |
| test_data = to_device(test_data, self._device) | |
| with torch.no_grad(): | |
| x, y = self._model_encode(test_data) | |
| return x.size()[1:], y.size()[1:] | |
| def _model_encode(self, data: dict) -> Tuple[torch.Tensor]: | |
| """ | |
| Overview: | |
| Get the encoding of the main model as input for the auxiliary model. | |
| Arguments: | |
| - data (:obj:`dict`): Dict type data, same as the _forward_learn input. | |
| Returns: | |
| - (:obj:`Tuple[torch.Tensor]`): the tuple of two tensors to apply contrastive embedding learning. \ | |
| In ST-DIM algorithm, these two variables are the dqn encoding of `obs` and `next_obs` respectively. | |
| """ | |
| assert hasattr(self._model, "encoder") | |
| x = self._model.encoder(data["obs"]) | |
| y = self._model.encoder(data["next_obs"]) | |
| return x, y | |
| def _forward_learn(self, data: Dict[str, Any]) -> Dict[str, Any]: | |
| """ | |
| Overview: | |
| Policy forward function of learn mode (training policy and updating parameters). Forward means \ | |
| that the policy inputs some training batch data from the replay buffer and then returns the output \ | |
| result, including various training information such as loss, q value, priority, aux_loss. | |
| Arguments: | |
| - data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including a batch of \ | |
| training samples. For each element in list, the key of the dict is the name of data items and the \ | |
| value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \ | |
| combinations. In the ``_forward_learn`` method, data often need to first be stacked in the batch \ | |
| dimension by some utility functions such as ``default_preprocess_learn``. \ | |
| For DQNSTDIM, each element in list is a dict containing at least the following keys: ``obs``, \ | |
| ``action``, ``reward``, ``next_obs``, ``done``. Sometimes, it also contains other keys such as \ | |
| ``weight`` and ``value_gamma``. | |
| Returns: | |
| - info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \ | |
| recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \ | |
| detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method. | |
| .. note:: | |
| The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ | |
| For the data type that not supported, the main reason is that the corresponding model does not support it. \ | |
| You can implement you own model rather than use the default model. For more information, please raise an \ | |
| issue in GitHub repo and we will continue to follow up. | |
| """ | |
| data = default_preprocess_learn( | |
| data, | |
| use_priority=self._priority, | |
| use_priority_IS_weight=self._cfg.priority_IS_weight, | |
| ignore_done=self._cfg.learn.ignore_done, | |
| use_nstep=True | |
| ) | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| # ====================== | |
| # Auxiliary model update | |
| # ====================== | |
| # RL network encoding | |
| # To train the auxiliary network, the gradients of x, y should be 0. | |
| with torch.no_grad(): | |
| x_no_grad, y_no_grad = self._model_encode(data) | |
| # the forward function of the auxiliary network | |
| self._aux_model.train() | |
| aux_loss_learn = self._aux_model.forward(x_no_grad, y_no_grad) | |
| # the BP process of the auxiliary network | |
| self._aux_optimizer.zero_grad() | |
| aux_loss_learn.backward() | |
| if self._cfg.multi_gpu: | |
| self.sync_gradients(self._aux_model) | |
| self._aux_optimizer.step() | |
| # ==================== | |
| # Q-learning forward | |
| # ==================== | |
| self._learn_model.train() | |
| self._target_model.train() | |
| # Current q value (main model) | |
| q_value = self._learn_model.forward(data['obs'])['logit'] | |
| # Target q value | |
| with torch.no_grad(): | |
| target_q_value = self._target_model.forward(data['next_obs'])['logit'] | |
| # Max q value action (main model) | |
| target_q_action = self._learn_model.forward(data['next_obs'])['action'] | |
| data_n = q_nstep_td_data( | |
| q_value, target_q_value, data['action'], target_q_action, data['reward'], data['done'], data['weight'] | |
| ) | |
| value_gamma = data.get('value_gamma') | |
| bellman_loss, td_error_per_sample = q_nstep_td_error( | |
| data_n, self._gamma, nstep=self._nstep, value_gamma=value_gamma | |
| ) | |
| # ====================== | |
| # Compute auxiliary loss | |
| # ====================== | |
| x, y = self._model_encode(data) | |
| self._aux_model.eval() | |
| aux_loss_eval = self._aux_model.forward(x, y) * self._aux_loss_weight | |
| loss = aux_loss_eval + bellman_loss | |
| # ==================== | |
| # Q-learning update | |
| # ==================== | |
| self._optimizer.zero_grad() | |
| loss.backward() | |
| if self._cfg.multi_gpu: | |
| self.sync_gradients(self._learn_model) | |
| self._optimizer.step() | |
| # ============= | |
| # after update | |
| # ============= | |
| self._target_model.update(self._learn_model.state_dict()) | |
| return { | |
| 'cur_lr': self._optimizer.defaults['lr'], | |
| 'bellman_loss': bellman_loss.item(), | |
| 'aux_loss_learn': aux_loss_learn.item(), | |
| 'aux_loss_eval': aux_loss_eval.item(), | |
| 'total_loss': loss.item(), | |
| 'q_value': q_value.mean().item(), | |
| 'priority': td_error_per_sample.abs().tolist(), | |
| # Only discrete action satisfying len(data['action'])==1 can return this and draw histogram on tensorboard. | |
| # '[histogram]action_distribution': data['action'], | |
| } | |
| def _monitor_vars_learn(self) -> List[str]: | |
| """ | |
| Overview: | |
| Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \ | |
| as text logger, tensorboard logger, will use these keys to save the corresponding data. | |
| Returns: | |
| - necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged. | |
| """ | |
| return ['cur_lr', 'bellman_loss', 'aux_loss_learn', 'aux_loss_eval', 'total_loss', 'q_value'] | |
| def _state_dict_learn(self) -> Dict[str, Any]: | |
| """ | |
| Overview: | |
| Return the state_dict of learn mode, usually including model and optimizer. | |
| Returns: | |
| - state_dict (:obj:`Dict[str, Any]`): the dict of current policy learn state, for saving and restoring. | |
| """ | |
| return { | |
| 'model': self._learn_model.state_dict(), | |
| 'target_model': self._target_model.state_dict(), | |
| 'optimizer': self._optimizer.state_dict(), | |
| 'aux_optimizer': self._aux_optimizer.state_dict(), | |
| } | |
| def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: | |
| """ | |
| Overview: | |
| Load the state_dict variable into policy learn mode. | |
| Arguments: | |
| - state_dict (:obj:`Dict[str, Any]`): the dict of policy learn state saved before. | |
| .. tip:: | |
| If you want to only load some parts of model, you can simply set the ``strict`` argument in \ | |
| load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \ | |
| complicated operation. | |
| """ | |
| self._learn_model.load_state_dict(state_dict['model']) | |
| self._target_model.load_state_dict(state_dict['target_model']) | |
| self._optimizer.load_state_dict(state_dict['optimizer']) | |
| self._aux_optimizer.load_state_dict(state_dict['aux_optimizer']) | |