Spaces:
Sleeping
Sleeping
| from typing import List, Dict, Any, Tuple, Union | |
| from collections import namedtuple | |
| import torch | |
| import copy | |
| import numpy as np | |
| from torch.distributions import Independent, Normal | |
| from ding.torch_utils import Adam, to_device | |
| from ding.rl_utils import ppo_data, ppo_error, ppo_policy_error, ppo_policy_data, get_gae_with_default_last_value, \ | |
| v_nstep_td_data, v_nstep_td_error, get_nstep_return_data, get_train_sample, gae, gae_data, ppo_error_continuous,\ | |
| get_gae | |
| from ding.model import model_wrap | |
| from ding.utils import POLICY_REGISTRY, split_data_generator, RunningMeanStd | |
| from ding.utils.data import default_collate, default_decollate | |
| from .base_policy import Policy | |
| from .common_utils import default_preprocess_learn | |
| class OffPPOCollectTrajPolicy(Policy): | |
| r""" | |
| Overview: | |
| Policy class of off policy PPO algorithm to collect expert traj for R2D3. | |
| """ | |
| config = dict( | |
| # (str) RL policy register name (refer to function "POLICY_REGISTRY"). | |
| type='ppo', | |
| # (bool) Whether to use cuda for network. | |
| cuda=False, | |
| # (bool) Whether the RL algorithm is on-policy or off-policy. (Note: in practice PPO can be off-policy used) | |
| on_policy=True, | |
| # (bool) Whether to use priority(priority sample, IS weight, update priority) | |
| priority=False, | |
| # (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True. | |
| priority_IS_weight=False, | |
| # (bool) Whether to use nstep_return for value loss | |
| nstep_return=False, | |
| nstep=3, | |
| learn=dict( | |
| # How many updates(iterations) to train after collector's one collection. | |
| # Bigger "update_per_collect" means bigger off-policy. | |
| # collect data -> update policy-> collect data -> ... | |
| update_per_collect=5, | |
| batch_size=64, | |
| learning_rate=0.001, | |
| # ============================================================== | |
| # The following configs is algorithm-specific | |
| # ============================================================== | |
| # (float) The loss weight of value network, policy network weight is set to 1 | |
| value_weight=0.5, | |
| # (float) The loss weight of entropy regularization, policy network weight is set to 1 | |
| entropy_weight=0.01, | |
| # (float) PPO clip ratio, defaults to 0.2 | |
| clip_ratio=0.2, | |
| # (bool) Whether to use advantage norm in a whole training batch | |
| adv_norm=False, | |
| ignore_done=False, | |
| ), | |
| collect=dict( | |
| # ============================================================== | |
| # The following configs is algorithm-specific | |
| # ============================================================== | |
| # (float) Reward's future discount factor, aka. gamma. | |
| discount_factor=0.99, | |
| # (float) GAE lambda factor for the balance of bias and variance(1-step td and mc) | |
| gae_lambda=0.95, | |
| ), | |
| eval=dict(), | |
| other=dict(replay_buffer=dict(replay_buffer_size=10000, ), ), | |
| ) | |
| def default_model(self) -> Tuple[str, List[str]]: | |
| return 'vac', ['ding.model.template.vac'] | |
| def _init_learn(self) -> None: | |
| r""" | |
| Overview: | |
| Learn mode init method. Called by ``self.__init__``. | |
| Init the optimizer, algorithm config and the main model. | |
| """ | |
| self._priority = self._cfg.priority | |
| self._priority_IS_weight = self._cfg.priority_IS_weight | |
| assert not self._priority and not self._priority_IS_weight, "Priority is not implemented in PPO" | |
| # Orthogonal init | |
| for m in self._model.modules(): | |
| if isinstance(m, torch.nn.Conv2d): | |
| torch.nn.init.orthogonal_(m.weight) | |
| if isinstance(m, torch.nn.Linear): | |
| torch.nn.init.orthogonal_(m.weight) | |
| # Optimizer | |
| self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate) | |
| self._learn_model = model_wrap(self._model, wrapper_name='base') | |
| # Algorithm config | |
| self._value_weight = self._cfg.learn.value_weight | |
| self._entropy_weight = self._cfg.learn.entropy_weight | |
| self._clip_ratio = self._cfg.learn.clip_ratio | |
| self._adv_norm = self._cfg.learn.adv_norm | |
| self._nstep = self._cfg.nstep | |
| self._nstep_return = self._cfg.nstep_return | |
| # Main model | |
| self._learn_model.reset() | |
| def _forward_learn(self, data: dict) -> Dict[str, Any]: | |
| r""" | |
| Overview: | |
| Forward and backward function of learn mode. | |
| Arguments: | |
| - data (:obj:`dict`): Dict type data | |
| Returns: | |
| - info_dict (:obj:`Dict[str, Any]`): | |
| Including current lr, total_loss, policy_loss, value_loss, entropy_loss, \ | |
| adv_abs_max, approx_kl, clipfrac | |
| """ | |
| data = default_preprocess_learn(data, ignore_done=self._cfg.learn.ignore_done, use_nstep=self._nstep_return) | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| # ==================== | |
| # PPO forward | |
| # ==================== | |
| self._learn_model.train() | |
| # normal ppo | |
| if not self._nstep_return: | |
| output = self._learn_model.forward(data['obs'], mode='compute_actor_critic') | |
| adv = data['adv'] | |
| return_ = data['value'] + adv | |
| if self._adv_norm: | |
| # Normalize advantage in a total train_batch | |
| adv = (adv - adv.mean()) / (adv.std() + 1e-8) | |
| # Calculate ppo error | |
| ppodata = ppo_data( | |
| output['logit'], data['logit'], data['action'], output['value'], data['value'], adv, return_, | |
| data['weight'] | |
| ) | |
| ppo_loss, ppo_info = ppo_error(ppodata, self._clip_ratio) | |
| wv, we = self._value_weight, self._entropy_weight | |
| total_loss = ppo_loss.policy_loss + wv * ppo_loss.value_loss - we * ppo_loss.entropy_loss | |
| else: | |
| output = self._learn_model.forward(data['obs'], mode='compute_actor') | |
| adv = data['adv'] | |
| if self._adv_norm: | |
| # Normalize advantage in a total train_batch | |
| adv = (adv - adv.mean()) / (adv.std() + 1e-8) | |
| # Calculate ppo error | |
| ppodata = ppo_policy_data(output['logit'], data['logit'], data['action'], adv, data['weight']) | |
| ppo_policy_loss, ppo_info = ppo_policy_error(ppodata, self._clip_ratio) | |
| wv, we = self._value_weight, self._entropy_weight | |
| next_obs = data.get('next_obs') | |
| value_gamma = data.get('value_gamma') | |
| reward = data.get('reward') | |
| # current value | |
| value = self._learn_model.forward(data['obs'], mode='compute_critic') | |
| # target value | |
| next_data = {'obs': next_obs} | |
| target_value = self._learn_model.forward(next_data['obs'], mode='compute_critic') | |
| # TODO what should we do here to keep shape | |
| assert self._nstep > 1 | |
| td_data = v_nstep_td_data( | |
| value['value'], target_value['value'], reward.t(), data['done'], data['weight'], value_gamma | |
| ) | |
| # calculate v_nstep_td critic_loss | |
| critic_loss, td_error_per_sample = v_nstep_td_error(td_data, self._gamma, self._nstep) | |
| ppo_loss_data = namedtuple('ppo_loss', ['policy_loss', 'value_loss', 'entropy_loss']) | |
| ppo_loss = ppo_loss_data(ppo_policy_loss.policy_loss, critic_loss, ppo_policy_loss.entropy_loss) | |
| total_loss = ppo_policy_loss.policy_loss + wv * critic_loss - we * ppo_policy_loss.entropy_loss | |
| # ==================== | |
| # PPO update | |
| # ==================== | |
| self._optimizer.zero_grad() | |
| total_loss.backward() | |
| self._optimizer.step() | |
| return { | |
| 'cur_lr': self._optimizer.defaults['lr'], | |
| 'total_loss': total_loss.item(), | |
| 'policy_loss': ppo_loss.policy_loss.item(), | |
| 'value_loss': ppo_loss.value_loss.item(), | |
| 'entropy_loss': ppo_loss.entropy_loss.item(), | |
| 'adv_abs_max': adv.abs().max().item(), | |
| 'approx_kl': ppo_info.approx_kl, | |
| 'clipfrac': ppo_info.clipfrac, | |
| } | |
| def _state_dict_learn(self) -> Dict[str, Any]: | |
| return { | |
| 'model': self._learn_model.state_dict(), | |
| 'optimizer': self._optimizer.state_dict(), | |
| } | |
| def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: | |
| self._learn_model.load_state_dict(state_dict['model']) | |
| self._optimizer.load_state_dict(state_dict['optimizer']) | |
| def _init_collect(self) -> None: | |
| r""" | |
| Overview: | |
| Collect mode init method. Called by ``self.__init__``. | |
| Init traj and unroll length, collect model. | |
| """ | |
| self._unroll_len = self._cfg.collect.unroll_len | |
| # self._collect_model = model_wrap(self._model, wrapper_name='multinomial_sample') | |
| # NOTE this policy is to collect expert traj, so we have to use argmax_sample wrapper | |
| self._collect_model = model_wrap(self._model, wrapper_name='argmax_sample') | |
| self._collect_model.reset() | |
| self._gamma = self._cfg.collect.discount_factor | |
| self._gae_lambda = self._cfg.collect.gae_lambda | |
| self._nstep = self._cfg.nstep | |
| self._nstep_return = self._cfg.nstep_return | |
| def _forward_collect(self, data: dict) -> dict: | |
| r""" | |
| Overview: | |
| Forward function for collect mode | |
| Arguments: | |
| - data (:obj:`dict`): Dict type data, including at least ['obs']. | |
| Returns: | |
| - data (:obj:`dict`): The collected data | |
| """ | |
| data_id = list(data.keys()) | |
| data = default_collate(list(data.values())) | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| self._collect_model.eval() | |
| with torch.no_grad(): | |
| output = self._collect_model.forward(data, mode='compute_actor_critic') | |
| if self._cuda: | |
| output = to_device(output, 'cpu') | |
| output = default_decollate(output) | |
| return {i: d for i, d in zip(data_id, output)} | |
| def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict: | |
| """ | |
| Overview: | |
| Generate dict type transition data from inputs. | |
| Arguments: | |
| - obs (:obj:`Any`): Env observation | |
| - model_output (:obj:`dict`): Output of collect model, including at least ['action'] | |
| - timestep (:obj:`namedtuple`): Output after env step, including at least ['obs', 'reward', 'done']\ | |
| (here 'obs' indicates obs after env step). | |
| Returns: | |
| - transition (:obj:`dict`): Dict type transition data. | |
| """ | |
| transition = { | |
| 'obs': obs, | |
| 'action': model_output['action'], | |
| # 'prev_state': model_output['prev_state'], | |
| 'prev_state': None, | |
| 'reward': timestep.reward, | |
| 'done': timestep.done, | |
| } | |
| return transition | |
| def _get_train_sample(self, data: list) -> Union[None, List[Any]]: | |
| r""" | |
| Overview: | |
| Get the trajectory and calculate GAE, return one data to cache for next time calculation | |
| Arguments: | |
| - data (:obj:`list`): The trajectory's cache | |
| Returns: | |
| - samples (:obj:`dict`): The training samples generated | |
| """ | |
| from copy import deepcopy | |
| # data_one_step = deepcopy(get_nstep_return_data(data, 1, gamma=self._gamma)) | |
| data_one_step = deepcopy(data) | |
| data = get_nstep_return_data(data, self._nstep, gamma=self._gamma) | |
| for i in range(len(data)): | |
| # here we record the one-step done, we don't need record one-step reward, | |
| # because the n-step reward in data already include one-step reward | |
| data[i]['done_one_step'] = data_one_step[i]['done'] | |
| return get_train_sample(data, self._unroll_len) # self._unroll_len_add_burnin_step | |
| def _init_eval(self) -> None: | |
| r""" | |
| Overview: | |
| Evaluate mode init method. Called by ``self.__init__``. | |
| Init eval model with argmax strategy. | |
| """ | |
| self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample') | |
| self._eval_model.reset() | |
| def _forward_eval(self, data: dict) -> dict: | |
| r""" | |
| Overview: | |
| Forward function for eval mode, similar to ``self._forward_collect``. | |
| Arguments: | |
| - data (:obj:`dict`): Dict type data, including at least ['obs']. | |
| Returns: | |
| - output (:obj:`dict`): Dict type data, including at least inferred action according to input obs. | |
| """ | |
| data_id = list(data.keys()) | |
| data = default_collate(list(data.values())) | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| self._eval_model.eval() | |
| with torch.no_grad(): | |
| output = self._eval_model.forward(data, mode='compute_actor') | |
| if self._cuda: | |
| output = to_device(output, 'cpu') | |
| output = default_decollate(output) | |
| return {i: d for i, d in zip(data_id, output)} | |
| def _monitor_vars_learn(self) -> List[str]: | |
| return super()._monitor_vars_learn() + [ | |
| 'policy_loss', 'value_loss', 'entropy_loss', 'adv_abs_max', 'approx_kl', 'clipfrac' | |
| ] | |