Spaces:
Sleeping
Sleeping
| import copy | |
| import torch | |
| from collections import namedtuple | |
| from typing import List, Dict, Any, Tuple, Union, Optional | |
| from ding.model import model_wrap | |
| from ding.rl_utils import q_nstep_td_data, q_nstep_td_error, q_nstep_td_error_with_rescale, get_nstep_return_data, \ | |
| get_train_sample | |
| from ding.torch_utils import Adam, to_device | |
| from ding.utils import POLICY_REGISTRY | |
| from ding.utils.data import timestep_collate, default_collate, default_decollate | |
| from .base_policy import Policy | |
| class R2D2GTrXLPolicy(Policy): | |
| r""" | |
| Overview: | |
| Policy class of R2D2 adopting the Transformer architecture GTrXL as backbone. | |
| Config: | |
| == ==================== ======== ============== ======================================== ======================= | |
| ID Symbol Type Default Value Description Other(Shape) | |
| == ==================== ======== ============== ======================================== ======================= | |
| 1 ``type`` str r2d2_gtrxl | RL policy register name, refer to | This arg is optional, | |
| | registry ``POLICY_REGISTRY`` | a placeholder | |
| 2 ``cuda`` bool False | Whether to use cuda for network | This arg can be diff- | |
| | erent from modes | |
| 3 ``on_policy`` bool False | Whether the RL algorithm is on-policy | |
| | or off-policy | |
| 4 ``priority`` bool False | Whether use priority(PER) | Priority sample, | |
| | update priority | |
| 5 | ``priority_IS`` bool False | Whether use Importance Sampling Weight | |
| | ``_weight`` | to correct biased update. If True, | |
| | priority must be True. | |
| 6 | ``discount_`` float 0.99, | Reward's future discount factor, aka. | May be 1 when sparse | |
| | ``factor`` [0.95, 0.999] | gamma | reward env | |
| 7 | ``nstep`` int 5, | N-step reward discount sum for target | |
| [3, 5] | q_value estimation | |
| 8 | ``burnin_step`` int 1 | The timestep of burnin operation, | |
| | which is designed to warm-up GTrXL | |
| | memory difference caused by off-policy | |
| 9 | ``learn.update`` int 1 | How many updates(iterations) to train | This args can be vary | |
| | ``per_collect`` | after collector's one collection. Only | from envs. Bigger val | |
| | valid in serial training | means more off-policy | |
| 10 | ``learn.batch_`` int 64 | The number of samples of an iteration | |
| | ``size`` | |
| 11 | ``learn.learning`` float 0.001 | Gradient step length of an iteration. | |
| | ``_rate`` | |
| 12 | ``learn.value_`` bool True | Whether use value_rescale function for | |
| | ``rescale`` | predicted value | |
| 13 | ``learn.target_`` int 100 | Frequence of target network update. | Hard(assign) update | |
| | ``update_freq`` | |
| 14 | ``learn.ignore_`` bool False | Whether ignore done for target value | Enable it for some | |
| | ``done`` | calculation. | fake termination env | |
| 15 ``collect.n_sample`` int [8, 128] | The number of training samples of a | It varies from | |
| | call of collector. | different envs | |
| 16 | ``collect.unroll`` int 25 | unroll length of an iteration | unroll_len>1 | |
| | ``_len`` | |
| 17 | ``collect.seq`` int 20 | Training sequence length | unroll_len>=seq_len>1 | |
| | ``_len`` | |
| 18 | ``learn.init_`` str zero | 'zero' or 'old', how to initialize the | | |
| | ``memory`` | memory before each training iteration. | | |
| == ==================== ======== ============== ======================================== ======================= | |
| """ | |
| config = dict( | |
| # (str) RL policy register name (refer to function "POLICY_REGISTRY"). | |
| type='r2d2_gtrxl', | |
| # (bool) Whether to use cuda for network. | |
| cuda=False, | |
| # (bool) Whether the RL algorithm is on-policy or off-policy. | |
| on_policy=False, | |
| # (bool) Whether use priority(priority sample, IS weight, update priority) | |
| priority=True, | |
| # (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True. | |
| priority_IS_weight=True, | |
| # ============================================================== | |
| # The following configs are algorithm-specific | |
| # ============================================================== | |
| # (float) Reward's future discount factor, aka. gamma. | |
| discount_factor=0.99, | |
| # (int) N-step reward for target q_value estimation | |
| nstep=5, | |
| # how many steps to use as burnin | |
| burnin_step=1, | |
| # (int) trajectory length | |
| unroll_len=25, | |
| # (int) training sequence length | |
| seq_len=20, | |
| learn=dict( | |
| update_per_collect=1, | |
| batch_size=64, | |
| learning_rate=0.0001, | |
| # ============================================================== | |
| # The following configs are algorithm-specific | |
| # ============================================================== | |
| # (int) Frequence of target network update. | |
| # target_update_freq=100, | |
| target_update_theta=0.001, | |
| ignore_done=False, | |
| # (bool) whether use value_rescale function for predicted value | |
| value_rescale=False, | |
| # 'zero' or 'old', how to initialize the memory in training | |
| init_memory='zero' | |
| ), | |
| collect=dict( | |
| # NOTE it is important that don't include key n_sample here, to make sure self._traj_len=INF | |
| each_iter_n_sample=32, | |
| # `env_num` is used in hidden state, should equal to that one in env config. | |
| # User should specify this value in user config. | |
| env_num=None, | |
| ), | |
| eval=dict( | |
| # `env_num` is used in hidden state, should equal to that one in env config. | |
| # User should specify this value in user config. | |
| env_num=None, | |
| ), | |
| other=dict( | |
| eps=dict( | |
| type='exp', | |
| start=0.95, | |
| end=0.05, | |
| decay=10000, | |
| ), | |
| replay_buffer=dict(replay_buffer_size=10000, ), | |
| ), | |
| ) | |
| def default_model(self) -> Tuple[str, List[str]]: | |
| return 'gtrxldqn', ['ding.model.template.q_learning'] | |
| def _init_learn(self) -> None: | |
| """ | |
| Overview: | |
| Init the learner model of GTrXLR2D2Policy. \ | |
| Target model has 2 wrappers: 'target' for weights update and 'transformer_segment' to split trajectories \ | |
| in segments. Learn model has 2 wrappers: 'argmax' to select the best action and 'transformer_segment'. | |
| Arguments: | |
| - learning_rate (:obj:`float`): The learning rate fo the optimizer | |
| - gamma (:obj:`float`): The discount factor | |
| - nstep (:obj:`int`): The num of n step return | |
| - value_rescale (:obj:`bool`): Whether to use value rescaled loss in algorithm | |
| - burnin_step (:obj:`int`): The num of step of burnin | |
| - seq_len (:obj:`int`): Training sequence length | |
| - init_memory (:obj:`str`): 'zero' or 'old', how to initialize the memory before each training iteration. | |
| .. note:: | |
| The ``_init_learn`` method takes the argument from the self._cfg.learn in the config file | |
| """ | |
| self._priority = self._cfg.priority | |
| self._priority_IS_weight = self._cfg.priority_IS_weight | |
| self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate) | |
| self._gamma = self._cfg.discount_factor | |
| self._nstep = self._cfg.nstep | |
| self._burnin_step = self._cfg.burnin_step | |
| self._batch_size = self._cfg.learn.batch_size | |
| self._seq_len = self._cfg.seq_len | |
| self._value_rescale = self._cfg.learn.value_rescale | |
| self._init_memory = self._cfg.learn.init_memory | |
| assert self._init_memory in ['zero', 'old'] | |
| self._target_model = copy.deepcopy(self._model) | |
| self._target_model = model_wrap( | |
| self._target_model, | |
| wrapper_name='target', | |
| update_type='momentum', | |
| update_kwargs={'theta': self._cfg.learn.target_update_theta} | |
| ) | |
| self._target_model = model_wrap(self._target_model, seq_len=self._seq_len, wrapper_name='transformer_segment') | |
| self._learn_model = model_wrap(self._model, wrapper_name='argmax_sample') | |
| self._learn_model = model_wrap(self._learn_model, seq_len=self._seq_len, wrapper_name='transformer_segment') | |
| self._learn_model.reset() | |
| self._target_model.reset() | |
| def _data_preprocess_learn(self, data: List[Dict[str, Any]]) -> dict: | |
| r""" | |
| Overview: | |
| Preprocess the data to fit the required data format for learning | |
| Arguments: | |
| - data (:obj:`List[Dict[str, Any]]`): the data collected from collect function | |
| Returns: | |
| - data (:obj:`Dict[str, Any]`): the processed data, including at least \ | |
| ['main_obs', 'target_obs', 'burnin_obs', 'action', 'reward', 'done', 'weight'] | |
| - data_info (:obj:`dict`): the data info, such as replay_buffer_idx, replay_unique_id | |
| """ | |
| if self._init_memory == 'old' and 'prev_memory' in data[0].keys(): | |
| # retrieve the memory corresponding to the first and n_step(th) element in each trajectory and remove it | |
| # from 'data' | |
| prev_mem = [b['prev_memory'][0] for b in data] | |
| prev_mem_target = [b['prev_memory'][self._nstep] for b in data] | |
| # stack the memory entries along the batch dimension, | |
| # reshape the new memory to have shape (layer_num+1, memory_len, bs, embedding_dim) compatible with GTrXL | |
| prev_mem_batch = torch.stack(prev_mem, 0).permute(1, 2, 0, 3) | |
| prev_mem_target_batch = torch.stack(prev_mem_target, 0).permute(1, 2, 0, 3) | |
| data = timestep_collate(data) | |
| data['prev_memory_batch'] = prev_mem_batch | |
| data['prev_memory_target_batch'] = prev_mem_target_batch | |
| else: | |
| data = timestep_collate(data) | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| if self._priority_IS_weight: | |
| assert self._priority, "Use IS Weight correction, but Priority is not used." | |
| if self._priority and self._priority_IS_weight: | |
| data['weight'] = data['IS'] | |
| else: | |
| data['weight'] = data.get('weight', None) | |
| # data['done'], data['weight'], data['value_gamma'] is used in def _forward_learn() to calculate | |
| # the q_nstep_td_error, should be length of [self._unroll_len] | |
| ignore_done = self._cfg.learn.ignore_done | |
| if ignore_done: | |
| data['done'] = [None for _ in range(self._unroll_len)] | |
| else: | |
| data['done'] = data['done'].float() # for computation of online model self._learn_model | |
| # NOTE that after the proprocessing of get_nstep_return_data() in _get_train_sample | |
| # the data['done'][t] is already the n-step done | |
| # if the data don't include 'weight' or 'value_gamma' then fill in None in a list | |
| # with length of [self._unroll_len_add_burnin_step-self._burnin_step], | |
| # below is two different implementation ways | |
| if 'value_gamma' not in data: | |
| data['value_gamma'] = [None for _ in range(self._unroll_len)] | |
| else: | |
| data['value_gamma'] = data['value_gamma'] | |
| if 'weight' not in data or data['weight'] is None: | |
| data['weight'] = [None for _ in range(self._unroll_len)] | |
| else: | |
| data['weight'] = data['weight'] * torch.ones_like(data['done']) | |
| # every timestep in sequence has same weight, which is the _priority_IS_weight in PER | |
| data['action'] = data['action'][:-self._nstep] | |
| data['reward'] = data['reward'][:-self._nstep] | |
| data['main_obs'] = data['obs'][:-self._nstep] | |
| # the target_obs is used to calculate the target_q_value | |
| data['target_obs'] = data['obs'][self._nstep:] | |
| return data | |
| def _forward_learn(self, data: dict) -> Dict[str, Any]: | |
| r""" | |
| Overview: | |
| Forward and backward function of learn mode. | |
| Acquire the data, calculate the loss and optimize learner model. | |
| Arguments: | |
| - data (:obj:`dict`): Dict type data, including at least \ | |
| ['main_obs', 'target_obs', 'burnin_obs', 'action', 'reward', 'done', 'weight'] | |
| Returns: | |
| - info_dict (:obj:`Dict[str, Any]`): Including cur_lr and total_loss | |
| - cur_lr (:obj:`float`): Current learning rate | |
| - total_loss (:obj:`float`): The calculated loss | |
| """ | |
| data = self._data_preprocess_learn(data) # shape (seq_len, bs, obs_dim) | |
| self._learn_model.train() | |
| self._target_model.train() | |
| if self._init_memory == 'old': | |
| # use the previous hidden state memory | |
| self._learn_model.reset_memory(state=data['prev_memory_batch']) | |
| self._target_model.reset_memory(state=data['prev_memory_target_batch']) | |
| elif self._init_memory == 'zero': | |
| # use the zero-initialized state memory | |
| self._learn_model.reset_memory() | |
| self._target_model.reset_memory() | |
| inputs = data['main_obs'] | |
| q_value = self._learn_model.forward(inputs)['logit'] # shape (seq_len, bs, act_dim) | |
| next_inputs = data['target_obs'] | |
| with torch.no_grad(): | |
| target_q_value = self._target_model.forward(next_inputs)['logit'] | |
| if self._init_memory == 'old': | |
| self._learn_model.reset_memory(state=data['prev_memory_target_batch']) | |
| elif self._init_memory == 'zero': | |
| self._learn_model.reset_memory() | |
| target_q_action = self._learn_model.forward(next_inputs)['action'] # argmax_action double_dqn | |
| action, reward, done, weight = data['action'], data['reward'], data['done'], data['weight'] | |
| value_gamma = data['value_gamma'] | |
| # T, B, nstep -> T, nstep, B | |
| reward = reward.permute(0, 2, 1).contiguous() | |
| loss = [] | |
| td_error = [] | |
| for t in range(self._burnin_step, self._unroll_len - self._nstep): | |
| # here skip the first 'burnin_step' steps because we only needed that to initialize the memory, and | |
| # skip the last 'nstep' steps because we don't have their target obs | |
| td_data = q_nstep_td_data( | |
| q_value[t], target_q_value[t], action[t], target_q_action[t], reward[t], done[t], weight[t] | |
| ) | |
| if self._value_rescale: | |
| l, e = q_nstep_td_error_with_rescale(td_data, self._gamma, self._nstep, value_gamma=value_gamma[t]) | |
| else: | |
| l, e = q_nstep_td_error(td_data, self._gamma, self._nstep, value_gamma=value_gamma[t]) | |
| loss.append(l) | |
| td_error.append(e.abs()) | |
| loss = sum(loss) / (len(loss) + 1e-8) | |
| # using the mixture of max and mean absolute n-step TD-errors as the priority of the sequence | |
| td_error_per_sample = 0.9 * torch.max( | |
| torch.stack(td_error), dim=0 | |
| )[0] + (1 - 0.9) * (torch.sum(torch.stack(td_error), dim=0) / (len(td_error) + 1e-8)) | |
| # td_error shape list(<self._unroll_len_add_burnin_step-self._burnin_step-self._nstep>, B), for example, (75,64) | |
| # torch.sum(torch.stack(td_error), dim=0) can also be replaced with sum(td_error) | |
| # update | |
| self._optimizer.zero_grad() | |
| loss.backward() | |
| self._optimizer.step() | |
| # after update | |
| self._target_model.update(self._learn_model.state_dict()) | |
| # the information for debug | |
| batch_range = torch.arange(action[0].shape[0]) | |
| q_s_a_t0 = q_value[0][batch_range, action[0]] | |
| target_q_s_a_t0 = target_q_value[0][batch_range, target_q_action[0]] | |
| ret = { | |
| 'cur_lr': self._optimizer.defaults['lr'], | |
| 'total_loss': loss.item(), | |
| 'priority': td_error_per_sample.abs().tolist(), | |
| # the first timestep in the sequence, may not be the start of episode | |
| 'q_s_taken-a_t0': q_s_a_t0.mean().item(), | |
| 'target_q_s_max-a_t0': target_q_s_a_t0.mean().item(), | |
| 'q_s_a-mean_t0': q_value[0].mean().item(), | |
| } | |
| return ret | |
| def _reset_learn(self, data_id: Optional[List[int]] = None) -> None: | |
| self._learn_model.reset(data_id=data_id) | |
| self._target_model.reset(data_id=data_id) | |
| self._learn_model.reset_memory() | |
| self._target_model.reset_memory() | |
| def _state_dict_learn(self) -> Dict[str, Any]: | |
| return { | |
| 'model': self._learn_model.state_dict(), | |
| 'optimizer': self._optimizer.state_dict(), | |
| } | |
| def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: | |
| self._learn_model.load_state_dict(state_dict['model']) | |
| self._optimizer.load_state_dict(state_dict['optimizer']) | |
| def _init_collect(self) -> None: | |
| r""" | |
| Overview: | |
| Collect mode init method. Called by ``self.__init__``. | |
| Init unroll length and sequence len, collect model. | |
| """ | |
| assert 'unroll_len' not in self._cfg.collect, "Use default unroll_len" | |
| self._nstep = self._cfg.nstep | |
| self._gamma = self._cfg.discount_factor | |
| self._unroll_len = self._cfg.unroll_len | |
| self._seq_len = self._cfg.seq_len | |
| self._collect_model = model_wrap(self._model, wrapper_name='transformer_input', seq_len=self._seq_len) | |
| self._collect_model = model_wrap(self._collect_model, wrapper_name='eps_greedy_sample') | |
| self._collect_model = model_wrap( | |
| self._collect_model, wrapper_name='transformer_memory', batch_size=self.cfg.collect.env_num | |
| ) | |
| self._collect_model.reset() | |
| def _forward_collect(self, data: dict, eps: float) -> dict: | |
| r""" | |
| Overview: | |
| Forward function for collect mode with eps_greedy | |
| Arguments: | |
| - data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \ | |
| values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer. | |
| - eps (:obj:`float`): epsilon value for exploration, which is decayed by collected env step. | |
| Returns: | |
| - output (:obj:`Dict[int, Any]`): Dict type data, including at least inferred action according to input obs. | |
| ReturnsKeys | |
| - necessary: ``action`` | |
| """ | |
| data_id = list(data.keys()) | |
| data = default_collate(list(data.values())) | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| self._collect_model.eval() | |
| with torch.no_grad(): | |
| output = self._collect_model.forward(data, eps=eps, data_id=data_id) | |
| del output['input_seq'] | |
| if self._cuda: | |
| output = to_device(output, 'cpu') | |
| output = default_decollate(output) | |
| return {i: d for i, d in zip(data_id, output)} | |
| def _reset_collect(self, data_id: Optional[List[int]] = None) -> None: | |
| # data_id is ID of env to be reset | |
| self._collect_model.reset(data_id=data_id) | |
| def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict: | |
| r""" | |
| Overview: | |
| Generate dict type transition data from inputs. | |
| Arguments: | |
| - obs (:obj:`Any`): Env observation | |
| - model_output (:obj:`dict`): Output of collect model, including at least ['action', 'prev_state'] | |
| - timestep (:obj:`namedtuple`): Output after env step, including at least ['reward', 'done'] \ | |
| (here 'obs' indicates obs after env step). | |
| Returns: | |
| - transition (:obj:`dict`): Dict type transition data. | |
| """ | |
| transition = { | |
| 'obs': obs, | |
| 'action': model_output['action'], | |
| 'prev_memory': model_output['memory'], # state of the memory before taking the 'action' | |
| 'prev_state': None, | |
| 'reward': timestep.reward, | |
| 'done': timestep.done, | |
| } | |
| return transition | |
| def _get_train_sample(self, data: list) -> Union[None, List[Any]]: | |
| r""" | |
| Overview: | |
| Get the trajectory and the n step return data, then sample from the n_step return data | |
| Arguments: | |
| - data (:obj:`list`): The trajectory's cache | |
| Returns: | |
| - samples (:obj:`dict`): The training samples generated | |
| """ | |
| self._seq_len = self._cfg.seq_len | |
| data = get_nstep_return_data(data, self._nstep, gamma=self._gamma) | |
| return get_train_sample(data, self._unroll_len) | |
| def _init_eval(self) -> None: | |
| r""" | |
| Overview: | |
| Evaluate mode init method. Called by ``self.__init__``. | |
| Init eval model with argmax strategy. | |
| """ | |
| self._eval_model = model_wrap(self._model, wrapper_name='transformer_input', seq_len=self._seq_len) | |
| self._eval_model = model_wrap(self._eval_model, wrapper_name='argmax_sample') | |
| self._eval_model = model_wrap( | |
| self._eval_model, wrapper_name='transformer_memory', batch_size=self.cfg.eval.env_num | |
| ) | |
| self._eval_model.reset() | |
| def _forward_eval(self, data: dict) -> dict: | |
| r""" | |
| Overview: | |
| Forward function of eval mode, similar to ``self._forward_collect``. | |
| Arguments: | |
| - data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \ | |
| values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer. | |
| Returns: | |
| - output (:obj:`Dict[int, Any]`): The dict of predicting action for the interaction with env. | |
| ReturnsKeys | |
| - necessary: ``action`` | |
| """ | |
| data_id = list(data.keys()) | |
| data = default_collate(list(data.values())) | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| self._eval_model.eval() | |
| with torch.no_grad(): | |
| output = self._eval_model.forward(data, data_id=data_id) | |
| if self._cuda: | |
| output = to_device(output, 'cpu') | |
| output = default_decollate(output) | |
| return {i: d for i, d in zip(data_id, output)} | |
| def _reset_eval(self, data_id: Optional[List[int]] = None) -> None: | |
| self._eval_model.reset(data_id=data_id) | |
| def _monitor_vars_learn(self) -> List[str]: | |
| return super()._monitor_vars_learn() + [ | |
| 'total_loss', 'priority', 'q_s_taken-a_t0', 'target_q_s_max-a_t0', 'q_s_a-mean_t0' | |
| ] | |