Spaces:
Sleeping
Sleeping
| from typing import Union, Tuple, List, Dict | |
| from easydict import EasyDict | |
| import random | |
| import torch | |
| import torch.nn as nn | |
| import torch.optim as optim | |
| import torch.nn.functional as F | |
| from ding.utils import SequenceType, REWARD_MODEL_REGISTRY | |
| from ding.model import FCEncoder, ConvEncoder | |
| from .base_reward_model import BaseRewardModel | |
| from ding.utils import RunningMeanStd | |
| from ding.torch_utils.data_helper import to_tensor | |
| import numpy as np | |
| def collect_states(iterator): | |
| res = [] | |
| for item in iterator: | |
| state = item['obs'] | |
| res.append(state) | |
| return res | |
| class RndNetwork(nn.Module): | |
| def __init__(self, obs_shape: Union[int, SequenceType], hidden_size_list: SequenceType) -> None: | |
| super(RndNetwork, self).__init__() | |
| if isinstance(obs_shape, int) or len(obs_shape) == 1: | |
| self.target = FCEncoder(obs_shape, hidden_size_list) | |
| self.predictor = FCEncoder(obs_shape, hidden_size_list) | |
| elif len(obs_shape) == 3: | |
| self.target = ConvEncoder(obs_shape, hidden_size_list) | |
| self.predictor = ConvEncoder(obs_shape, hidden_size_list) | |
| else: | |
| raise KeyError( | |
| "not support obs_shape for pre-defined encoder: {}, please customize your own RND model". | |
| format(obs_shape) | |
| ) | |
| for param in self.target.parameters(): | |
| param.requires_grad = False | |
| def forward(self, obs: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | |
| predict_feature = self.predictor(obs) | |
| with torch.no_grad(): | |
| target_feature = self.target(obs) | |
| return predict_feature, target_feature | |
| class RndRewardModel(BaseRewardModel): | |
| """ | |
| Overview: | |
| The RND reward model class (https://arxiv.org/abs/1810.12894v1) | |
| Interface: | |
| ``estimate``, ``train``, ``collect_data``, ``clear_data``, \ | |
| ``__init__``, ``_train``, ``load_state_dict``, ``state_dict`` | |
| Config: | |
| == ==================== ===== ============= ======================================= ======================= | |
| ID Symbol Type Default Value Description Other(Shape) | |
| == ==================== ===== ============= ======================================= ======================= | |
| 1 ``type`` str rnd | Reward model register name, refer | | |
| | to registry ``REWARD_MODEL_REGISTRY`` | | |
| 2 | ``intrinsic_`` str add | the intrinsic reward type | including add, new | |
| | ``reward_type`` | | , or assign | |
| 3 | ``learning_rate`` float 0.001 | The step size of gradient descent | | |
| 4 | ``batch_size`` int 64 | Training batch size | | |
| 5 | ``hidden`` list [64, 64, | the MLP layer shape | | |
| | ``_size_list`` (int) 128] | | | |
| 6 | ``update_per_`` int 100 | Number of updates per collect | | |
| | ``collect`` | | | |
| 7 | ``obs_norm`` bool True | Observation normalization | | |
| 8 | ``obs_norm_`` int 0 | min clip value for obs normalization | | |
| | ``clamp_min`` | |
| 9 | ``obs_norm_`` int 1 | max clip value for obs normalization | | |
| | ``clamp_max`` | |
| 10 | ``intrinsic_`` float 0.01 | the weight of intrinsic reward | r = w*r_i + r_e | |
| ``reward_weight`` | |
| 11 | ``extrinsic_`` bool True | Whether to normlize extrinsic reward | |
| ``reward_norm`` | |
| 12 | ``extrinsic_`` int 1 | the upper bound of the reward | |
| ``reward_norm_max`` | normalization | |
| == ==================== ===== ============= ======================================= ======================= | |
| """ | |
| config = dict( | |
| # (str) Reward model register name, refer to registry ``REWARD_MODEL_REGISTRY``. | |
| type='rnd', | |
| # (str) The intrinsic reward type, including add, new, or assign. | |
| intrinsic_reward_type='add', | |
| # (float) The step size of gradient descent. | |
| learning_rate=1e-3, | |
| # (float) Batch size. | |
| batch_size=64, | |
| # (list(int)) Sequence of ``hidden_size`` of reward network. | |
| # If obs.shape == 1, use MLP layers. | |
| # If obs.shape == 3, use conv layer and final dense layer. | |
| hidden_size_list=[64, 64, 128], | |
| # (int) How many updates(iterations) to train after collector's one collection. | |
| # Bigger "update_per_collect" means bigger off-policy. | |
| # collect data -> update policy-> collect data -> ... | |
| update_per_collect=100, | |
| # (bool) Observation normalization: transform obs to mean 0, std 1. | |
| obs_norm=True, | |
| # (int) Min clip value for observation normalization. | |
| obs_norm_clamp_min=-1, | |
| # (int) Max clip value for observation normalization. | |
| obs_norm_clamp_max=1, | |
| # Means the relative weight of RND intrinsic_reward. | |
| # (float) The weight of intrinsic reward | |
| # r = intrinsic_reward_weight * r_i + r_e. | |
| intrinsic_reward_weight=0.01, | |
| # (bool) Whether to normlize extrinsic reward. | |
| # Normalize the reward to [0, extrinsic_reward_norm_max]. | |
| extrinsic_reward_norm=True, | |
| # (int) The upper bound of the reward normalization. | |
| extrinsic_reward_norm_max=1, | |
| ) | |
| def __init__(self, config: EasyDict, device: str = 'cpu', tb_logger: 'SummaryWriter' = None) -> None: # noqa | |
| super(RndRewardModel, self).__init__() | |
| self.cfg = config | |
| assert device == "cpu" or device.startswith("cuda") | |
| self.device = device | |
| if tb_logger is None: # TODO | |
| from tensorboardX import SummaryWriter | |
| tb_logger = SummaryWriter('rnd_reward_model') | |
| self.tb_logger = tb_logger | |
| self.reward_model = RndNetwork(config.obs_shape, config.hidden_size_list) | |
| self.reward_model.to(self.device) | |
| self.intrinsic_reward_type = config.intrinsic_reward_type | |
| assert self.intrinsic_reward_type in ['add', 'new', 'assign'] | |
| self.train_obs = [] | |
| self.opt = optim.Adam(self.reward_model.predictor.parameters(), config.learning_rate) | |
| self._running_mean_std_rnd_reward = RunningMeanStd(epsilon=1e-4) | |
| self.estimate_cnt_rnd = 0 | |
| self.train_cnt_icm = 0 | |
| self._running_mean_std_rnd_obs = RunningMeanStd(epsilon=1e-4) | |
| def _train(self) -> None: | |
| train_data: list = random.sample(self.train_obs, self.cfg.batch_size) | |
| train_data: torch.Tensor = torch.stack(train_data).to(self.device) | |
| if self.cfg.obs_norm: | |
| # Note: observation normalization: transform obs to mean 0, std 1 | |
| self._running_mean_std_rnd_obs.update(train_data.cpu().numpy()) | |
| train_data = (train_data - to_tensor(self._running_mean_std_rnd_obs.mean).to(self.device)) / to_tensor( | |
| self._running_mean_std_rnd_obs.std | |
| ).to(self.device) | |
| train_data = torch.clamp(train_data, min=self.cfg.obs_norm_clamp_min, max=self.cfg.obs_norm_clamp_max) | |
| predict_feature, target_feature = self.reward_model(train_data) | |
| loss = F.mse_loss(predict_feature, target_feature.detach()) | |
| self.tb_logger.add_scalar('rnd_reward/loss', loss, self.train_cnt_icm) | |
| self.opt.zero_grad() | |
| loss.backward() | |
| self.opt.step() | |
| def train(self) -> None: | |
| for _ in range(self.cfg.update_per_collect): | |
| self._train() | |
| self.train_cnt_icm += 1 | |
| def estimate(self, data: list) -> List[Dict]: | |
| """ | |
| Rewrite the reward key in each row of the data. | |
| """ | |
| # NOTE: deepcopy reward part of data is very important, | |
| # otherwise the reward of data in the replay buffer will be incorrectly modified. | |
| train_data_augmented = self.reward_deepcopy(data) | |
| obs = collect_states(train_data_augmented) | |
| obs = torch.stack(obs).to(self.device) | |
| if self.cfg.obs_norm: | |
| # Note: observation normalization: transform obs to mean 0, std 1 | |
| obs = (obs - to_tensor(self._running_mean_std_rnd_obs.mean | |
| ).to(self.device)) / to_tensor(self._running_mean_std_rnd_obs.std).to(self.device) | |
| obs = torch.clamp(obs, min=self.cfg.obs_norm_clamp_min, max=self.cfg.obs_norm_clamp_max) | |
| with torch.no_grad(): | |
| predict_feature, target_feature = self.reward_model(obs) | |
| mse = F.mse_loss(predict_feature, target_feature, reduction='none').mean(dim=1) | |
| self._running_mean_std_rnd_reward.update(mse.cpu().numpy()) | |
| # Note: according to the min-max normalization, transform rnd reward to [0,1] | |
| rnd_reward = (mse - mse.min()) / (mse.max() - mse.min() + 1e-8) | |
| # save the rnd_reward statistics into tb_logger | |
| self.estimate_cnt_rnd += 1 | |
| self.tb_logger.add_scalar('rnd_reward/rnd_reward_max', rnd_reward.max(), self.estimate_cnt_rnd) | |
| self.tb_logger.add_scalar('rnd_reward/rnd_reward_mean', rnd_reward.mean(), self.estimate_cnt_rnd) | |
| self.tb_logger.add_scalar('rnd_reward/rnd_reward_min', rnd_reward.min(), self.estimate_cnt_rnd) | |
| self.tb_logger.add_scalar('rnd_reward/rnd_reward_std', rnd_reward.std(), self.estimate_cnt_rnd) | |
| rnd_reward = rnd_reward.to(self.device) | |
| rnd_reward = torch.chunk(rnd_reward, rnd_reward.shape[0], dim=0) | |
| """ | |
| NOTE: Following normalization approach to extrinsic reward seems be not reasonable, | |
| because this approach compresses the extrinsic reward magnitude, resulting in less informative reward signals. | |
| """ | |
| # rewards = torch.stack([data[i]['reward'] for i in range(len(data))]) | |
| # rewards = (rewards - torch.min(rewards)) / (torch.max(rewards) - torch.min(rewards)) | |
| for item, rnd_rew in zip(train_data_augmented, rnd_reward): | |
| if self.intrinsic_reward_type == 'add': | |
| if self.cfg.extrinsic_reward_norm: | |
| item['reward'] = item[ | |
| 'reward'] / self.cfg.extrinsic_reward_norm_max + rnd_rew * self.cfg.intrinsic_reward_weight | |
| else: | |
| item['reward'] = item['reward'] + rnd_rew * self.cfg.intrinsic_reward_weight | |
| elif self.intrinsic_reward_type == 'new': | |
| item['intrinsic_reward'] = rnd_rew | |
| if self.cfg.extrinsic_reward_norm: | |
| item['reward'] = item['reward'] / self.cfg.extrinsic_reward_norm_max | |
| elif self.intrinsic_reward_type == 'assign': | |
| item['reward'] = rnd_rew | |
| # save the augmented_reward statistics into tb_logger | |
| rew = [item['reward'].cpu().numpy() for item in train_data_augmented] | |
| self.tb_logger.add_scalar('augmented_reward/reward_max', np.max(rew), self.estimate_cnt_rnd) | |
| self.tb_logger.add_scalar('augmented_reward/reward_mean', np.mean(rew), self.estimate_cnt_rnd) | |
| self.tb_logger.add_scalar('augmented_reward/reward_min', np.min(rew), self.estimate_cnt_rnd) | |
| self.tb_logger.add_scalar('augmented_reward/reward_std', np.std(rew), self.estimate_cnt_rnd) | |
| return train_data_augmented | |
| def collect_data(self, data: list) -> None: | |
| self.train_obs.extend(collect_states(data)) | |
| def clear_data(self) -> None: | |
| self.train_obs.clear() | |
| def state_dict(self) -> Dict: | |
| return self.reward_model.state_dict() | |
| def load_state_dict(self, _state_dict: Dict) -> None: | |
| self.reward_model.load_state_dict(_state_dict) | |