Spaces:
Sleeping
Sleeping
| import pytest | |
| import torch | |
| from itertools import product | |
| from easydict import EasyDict | |
| from ding.world_model.mbpo import MBPOWorldModel | |
| from ding.utils import deep_merge_dicts | |
| # arguments | |
| state_size = [16] | |
| action_size = [16, 1] | |
| args = list(product(*[state_size, action_size])) | |
| class TestMBPO: | |
| def get_world_model(self, state_size, action_size): | |
| cfg = MBPOWorldModel.default_config() | |
| cfg.model.max_epochs_since_update = 0 | |
| cfg = deep_merge_dicts( | |
| cfg, dict(cuda=False, model=dict(state_size=state_size, action_size=action_size, reward_size=1)) | |
| ) | |
| fake_env = EasyDict(termination_fn=lambda obs: torch.zeros_like(obs.sum(-1)).bool()) | |
| return MBPOWorldModel(cfg, fake_env, None) | |
| def test_step(self, state_size, action_size): | |
| states = torch.rand(128, state_size) | |
| actions = torch.rand(128, action_size) | |
| model = self.get_world_model(state_size, action_size) | |
| model.elite_model_idxes = [0, 1] | |
| rewards, next_obs, dones = model.step(states, actions) | |
| assert rewards.shape == (128, ) | |
| assert next_obs.shape == (128, state_size) | |
| assert dones.shape == (128, ) | |
| def test_train(self, state_size, action_size): | |
| states = torch.rand(1280, state_size) | |
| actions = torch.rand(1280, action_size) | |
| next_states = states + actions.mean(1, keepdim=True) | |
| rewards = next_states.mean(1, keepdim=True) | |
| inputs = torch.cat([states, actions], dim=1) | |
| labels = torch.cat([rewards, next_states], dim=1) | |
| model = self.get_world_model(state_size, action_size) | |
| model._train(inputs[:64], labels[:64]) | |
| def test_others(self, state_size, action_size): | |
| states = torch.rand(1280, state_size) | |
| actions = torch.rand(1280, action_size) | |
| next_states = states + actions.mean(1, keepdim=True) | |
| rewards = next_states.mean(1, keepdim=True) | |
| inputs = torch.cat([states, actions], dim=1) | |
| labels = torch.cat([rewards, next_states], dim=1) | |
| model = self.get_world_model(state_size, action_size) | |
| model._train(inputs[:64], labels[:64]) | |
| model._save_states() | |
| model._load_states() | |
| model._save_best(0, [1, 2, 3]) | |