Spaces:
Sleeping
Sleeping
File size: 18,972 Bytes
7cbc066 622d35c 7cbc066 622d35c 7cbc066 622d35c 7cbc066 622d35c 7cbc066 622d35c 7cbc066 622d35c 7cbc066 622d35c 7cbc066 622d35c 7cbc066 622d35c 7cbc066 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
#!/usr/bin/env python3
# app.py β Chat inference for AGILLM2 (HF Spaces friendly)
# - Auto-detects non-interactive env (Spaces) and launches Gradio UI
# - Loads final.pt from repo OpenTransformer/AGILLM2-fast-training
# - Qwen tokenizer + chat template
# - Optional local CLI REPL when run in a terminal
# - Adds a "Raw transcript" tab with "User:" / "Assistant:" lines
from __future__ import annotations
import os, sys, time, math, argparse
from typing import Optional, Tuple, List, Dict, Any
import torch
import torch.nn as nn
import torch.nn.functional as F
# Silence the PyTorch TF32 deprecation nag in Spaces logs (optional)
import warnings
warnings.filterwarnings("ignore", message="Please use the new API settings to control TF32 behavior")
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, logging as hf_log
hf_log.set_verbosity_error()
# βββββββββββββββββββββββββ Config βββββββββββββββββββββββββ
MODEL_REPO = os.getenv("MODEL_REPO", "OpenTransformer/AGILLM2-fast-training")
CKPT_NAME = os.getenv("CKPT_NAME", "final.pt") # e.g., step04121612.pt
TOKENIZER_ID = os.getenv("TOKENIZER_ID", "Qwen/Qwen3-235B-A22B-Thinking-2507")
DEV = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.backends.cuda.matmul.allow_tf32 = True
try:
torch.set_float32_matmul_precision("high")
except Exception:
pass
# βββββββββββββββββββββββββ Tokenizer βββββββββββββββββββββββββ
tok = AutoTokenizer.from_pretrained(TOKENIZER_ID, use_fast=True, trust_remote_code=True)
if tok.pad_token is None:
tok.add_special_tokens({"pad_token": "[PAD]"})
VOCAB = max(tok.get_vocab().values()) + 1
BLANK = tok.pad_token_id
EOS = tok.eos_token_id if tok.eos_token_id is not None else tok.sep_token_id
# βββββββββββββββββββββββββ AMP helper βββββββββββββββββββββββββ
try:
from torch.amp import autocast as _ac, GradScaler # noqa
except Exception:
from torch.cuda.amp import autocast as _ac, GradScaler # noqa
def _supports_fp8() -> bool:
return hasattr(torch, "float8_e4m3fn")
def _auto_amp_dtype(prefer_fp8: bool = False):
if DEV.type != "cuda":
return torch.float32
if prefer_fp8 and _supports_fp8():
return torch.float8_e4m3fn
try:
if torch.cuda.is_bf16_supported():
return torch.bfloat16
return torch.float16
except Exception:
return torch.float16
def amp(enabled: bool, prefer_fp8: bool = False):
if not (enabled and DEV.type == "cuda"):
from contextlib import nullcontext
return nullcontext()
return _ac(device_type="cuda", dtype=_auto_amp_dtype(prefer_fp8=prefer_fp8))
# βββββββββββββββββββββββββ ALiBi helpers βββββββββββββββββββββββββ
def _alibi_slopes(n_heads: int):
import math as _m
def pow2slopes(n):
start = 2 ** (-2 ** -(_m.log2(n) - 3))
ratio = start
return [start * (ratio ** i) for i in range(n)]
if _m.log2(n_heads).is_integer():
vals = pow2slopes(n_heads)
else:
closest = 2 ** _m.floor(_m.log2(n_heads))
vals = pow2slopes(closest); extra = pow2slopes(2 * closest)
vals += extra[0::2][: n_heads - closest]
return torch.tensor(vals, device=DEV).view(1, n_heads, 1, 1)
def alibi_bias(n_heads: int, n_tokens: int):
i = torch.arange(n_tokens, device=DEV).view(1, 1, n_tokens, 1)
j = torch.arange(n_tokens, device=DEV).view(1, 1, 1, n_tokens)
dist = (j - i).clamp_min(0)
slopes = _alibi_slopes(n_heads)
return -slopes * dist
# βββββββββββββββββββββββββ Model (Encoder + AR head) βββββββββββββββββββββββββ
class LowRankMHA(nn.Module):
def __init__(self, d: int, h: int, r: int, use_relpos: bool = True):
super().__init__()
assert d % h == 0, "d must be divisible by number of heads"
self.h, self.dk = h, d // h
self.use_relpos = use_relpos
self.q = nn.Linear(d, d, bias=False)
self.k = nn.Linear(d, d, bias=False)
self.v = nn.Linear(d, d, bias=False)
self.U = nn.Parameter(torch.randn(self.dk, r))
nn.init.orthogonal_(self.U)
self.proj = nn.Linear(h * r, d, bias=False)
self.drop = nn.Dropout(0.1)
def _proj(self, x):
B, N, _ = x.shape
return (x.view(B, N, self.h, self.dk).transpose(1, 2) @ self.U)
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None,
rel_bias_tokens: Optional[int] = None,
kv_cache: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache: bool = False):
q = self._proj(self.q(x))
k_new = self._proj(self.k(x))
v_new = self._proj(self.v(x))
if kv_cache is None:
k, v = k_new, v_new
else:
k, v = kv_cache
if use_cache:
k = torch.cat([k, k_new], dim=2)
v = torch.cat([v, v_new], dim=2)
att = (q @ k.transpose(-1, -2)) / math.sqrt(self.dk)
if q.size(2) == k.size(2):
if self.use_relpos and rel_bias_tokens is not None:
att = att + alibi_bias(self.h, rel_bias_tokens)
if mask is not None:
att = att + mask
z = (att.softmax(-1) @ v).transpose(1, 2)
z = z.reshape(x.size(0), x.size(1), -1)
out = self.drop(self.proj(z))
return (out, (k, v)) if use_cache else out
class Block(nn.Module):
def __init__(self, d: int, h: int, r: int):
super().__init__()
self.ln1, self.ln2 = nn.LayerNorm(d), nn.LayerNorm(d)
self.mha = LowRankMHA(d, h, r, use_relpos=True)
self.ff = nn.Sequential(nn.Linear(d, 4 * d), nn.ReLU(), nn.Linear(4 * d, d))
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor],
kv: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache: bool = False):
n = x.size(1)
if use_cache:
y, new_kv = self.mha(self.ln1(x), mask, rel_bias_tokens=n if mask is not None else None, kv_cache=kv, use_cache=True)
x = x + y
x = x + self.ff(self.ln2(x))
return x, new_kv
else:
x = x + self.mha(self.ln1(x), mask, rel_bias_tokens=n)
return x + self.ff(self.ln2(x))
class Encoder(nn.Module):
def __init__(self, cfg: Dict[str, int]):
super().__init__()
d, l, h, r = cfg["d"], cfg["layers"], cfg["heads"], cfg["rank"]
self.emb = nn.Embedding(VOCAB, d)
self.blocks = nn.ModuleList([Block(d, h, r) for _ in range(l)])
self.ln = nn.LayerNorm(d)
def forward(self, ids: torch.Tensor, mask: Optional[torch.Tensor],
kv_caches: Optional[List[Optional[Tuple[torch.Tensor, torch.Tensor]]]] = None,
use_cache: bool = False):
x = self.emb(ids)
if not use_cache:
for blk in self.blocks:
x = blk(x, mask)
return self.ln(x)
new_kvs: List[Tuple[torch.Tensor, torch.Tensor]] = []
for i, blk in enumerate(self.blocks):
kv = kv_caches[i] if (kv_caches is not None) else None
x, kv_out = blk(x, mask, kv, use_cache=True)
new_kvs.append(kv_out)
return self.ln(x), new_kvs
class ARHead(nn.Module):
def __init__(self, d):
super().__init__()
self.proj = nn.Linear(d, VOCAB)
def forward(self, h): return self.proj(h)
# βββββββββββββββββββββββββ Misc βββββββββββββββββββββββββ
def causal_mask(n: int):
m = torch.full((1, 1, n, n), float("-inf"), device=DEV)
return torch.triu(m, 1)
def _resolve_cfg_from_ckpt(sd: dict) -> Dict[str, int]:
if isinstance(sd, dict) and "cfg" in sd and isinstance(sd["cfg"], dict):
return dict(sd["cfg"])
core = sd.get("core", {})
emb_w = core.get("emb.weight")
if emb_w is None:
raise RuntimeError("Checkpoint missing core.emb.weight; cannot infer d/l/h/r.")
d = emb_w.shape[1]
layer_ids = []
for k in core.keys():
if k.startswith("blocks."):
parts = k.split(".")
if len(parts) > 2 and parts[1].isdigit():
layer_ids.append(int(parts[1]))
layers = (max(layer_ids) + 1) if layer_ids else 0
U = core.get("blocks.0.mha.U")
if U is None:
raise RuntimeError("Checkpoint missing blocks.0.mha.U; cannot infer rank/heads.")
dk, r = U.shape
h = d // dk
return {"d": d, "layers": layers, "heads": h, "rank": r}
def load_joint_from_hub(repo_id: str, filename: str):
ckpt_path = hf_hub_download(repo_id=repo_id, filename=filename, resume_download=True)
sd = torch.load(ckpt_path, map_location="cpu")
cfg = _resolve_cfg_from_ckpt(sd)
core = Encoder(cfg).to(DEV)
ar_h = ARHead(cfg["d"]).to(DEV)
core.load_state_dict(sd["core"])
if "ar" in sd: ar_h.load_state_dict(sd["ar"])
return core, ar_h, cfg
# βββββββββββββββββββββββββ Chat helpers βββββββββββββββββββββββββ
def render_chat(messages: List[Dict[str, str]], add_generation_prompt: bool = True) -> str:
try:
return tok.apply_chat_template(messages, tokenize=False, add_generation_prompt=add_generation_prompt)
except Exception:
# Fallback plain format
out = []
for m in messages:
role = m.get("role", "user")
content = m.get("content", "")
out.append(f"{role.capitalize()}: {content}")
if add_generation_prompt:
out.append("Assistant:")
return "\n".join(out)
def render_raw(history: List[Tuple[str, str]] | None, sys_prompt: str) -> str:
lines = []
if sys_prompt:
lines.append(f"System: {sys_prompt}")
for u, a in (history or []):
lines.append(f"User: {u}")
lines.append(f"Assistant: {a}")
return "\n".join(lines)
def _apply_no_repeat_ngram(logits: torch.Tensor, ids: torch.Tensor, n: int):
if n <= 0 or ids.size(1) < n - 1: return logits
prefix = ids[0, -(n - 1):].tolist()
banned, tokens = [], ids[0].tolist()
for i in range(len(tokens) - n + 1):
if tokens[i:i + n - 1] == prefix:
banned.append(tokens[i + n - 1])
if banned:
banned_idx = torch.tensor(banned, device=logits.device, dtype=torch.long)
logits[..., banned_idx] = float("-inf")
return logits
def _apply_rep_presence_frequency(logits, ids, last_n, repetition_penalty, presence_penalty, frequency_penalty):
if ids.numel() == 0: return logits
hist = ids[0, -last_n:].to(torch.long) if last_n > 0 else ids[0].to(torch.long)
if hist.numel() == 0: return logits
uniq, counts = torch.unique(hist, return_counts=True)
if presence_penalty != 0.0 or frequency_penalty != 0.0:
adjust = presence_penalty + frequency_penalty * counts.to(logits.dtype)
logits[..., uniq] = logits[..., uniq] - adjust
if repetition_penalty and abs(repetition_penalty - 1.0) > 1e-6:
sel = logits[..., uniq]
sel = torch.where(sel > 0, sel / repetition_penalty, sel * repetition_penalty)
logits[..., uniq] = sel
return logits
def _filter_top_k_top_p_min_p(logits: torch.Tensor, top_k: int, top_p: float, min_p: float, temperature: float):
logits = logits / max(temperature, 1e-8)
if logits.dim() == 1: logits = logits.unsqueeze(0)
probs = logits.softmax(-1)
V = probs.size(-1)
if top_k and top_k < V:
vals, idx = torch.topk(probs, top_k, dim=-1)
mask = torch.full_like(probs, 0.0); mask.scatter_(1, idx, 1.0); probs = probs * mask
if top_p < 1.0:
sorted_probs, sorted_idx = torch.sort(probs, descending=True, dim=-1)
cumsum = torch.cumsum(sorted_probs, dim=-1)
keep = cumsum <= top_p; keep[..., 0] = True
mask = torch.zeros_like(probs); mask.scatter_(1, sorted_idx, keep.to(mask.dtype))
probs = probs * mask
if min_p > 0.0:
probs = torch.where(probs >= min_p, probs, torch.zeros_like(probs))
sums = probs.sum(-1, keepdim=True); empty = (sums == 0)
if empty.any():
fallback_idx = logits.argmax(-1, keepdim=True)
probs = torch.where(empty, torch.zeros_like(probs), probs)
probs.scatter_(-1, fallback_idx, torch.where(empty, torch.ones_like(sums), torch.zeros_like(sums)))
probs = probs / probs.sum(-1, keepdim=True)
return probs
@torch.no_grad()
def chat_decode(core, ar_h, messages: List[Dict[str, str]], max_new: int = 200, T: float = 0.9,
greedy: bool = False, top_k: int = 50, top_p: float = 0.9, min_p: float = 0.0,
repetition_penalty: float = 1.1, presence_penalty: float = 0.3, frequency_penalty: float = 0.2,
penalty_last_n: int = 128, no_repeat_ngram_size: int = 3,
use_fp8: bool = False, fp8_fallback: bool = True) -> str:
prompt = render_chat(messages, add_generation_prompt=True)
ids = torch.tensor([tok.encode(prompt)], device=DEV)
prompt_len = ids.size(1)
with amp(use_fp8 or False, prefer_fp8=(use_fp8 and (_supports_fp8() or fp8_fallback))):
h_full, kvs = core(ids, causal_mask(ids.size(1)), use_cache=True)
for _ in range(max_new):
logits = ar_h(h_full)[:, -1]
logits = _apply_no_repeat_ngram(logits, ids, no_repeat_ngram_size)
logits = _apply_rep_presence_frequency(logits, ids, penalty_last_n,
repetition_penalty, presence_penalty, frequency_penalty)
if greedy:
nxt = logits.argmax(-1, keepdim=True)
else:
probs = _filter_top_k_top_p_min_p(logits.squeeze(0), top_k, top_p, min_p, T)
nxt = probs.multinomial(1)
ids = torch.cat([ids, nxt.unsqueeze(0) if nxt.dim()==1 else nxt], 1)
x = ids[:, -1:]
h_full, kvs = core(x, None, kv_caches=kvs, use_cache=True)
full_ids = ids[0].tolist()
return tok.decode(full_ids[prompt_len:], skip_special_tokens=True).strip()
# βββββββββββββββββββββββββ UI / CLI βββββββββββββββββββββββββ
def launch_gradio(core, ar_h):
import gradio as gr
with gr.Blocks() as demo:
gr.Markdown("### OpenTransformer / AGILLM2 β Chat")
with gr.Row():
temp = gr.Slider(0.1, 1.5, value=0.9, step=0.05, label="Temperature")
topp = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p")
topk = gr.Slider(0, 200, value=50, step=1, label="Top-k")
mxnt = gr.Slider(16, 1024, value=200, step=8, label="Max new tokens")
sys_prompt = gr.Textbox(value="You are a helpful, concise assistant.", label="System prompt")
with gr.Tabs():
with gr.TabItem("Chat"):
chatbot = gr.Chatbot(height=520, label="Conversation")
msg = gr.Textbox(placeholder="Say something usefulβ¦", label="Message")
submit = gr.Button("Send", variant="primary")
with gr.TabItem("Raw transcript"):
raw = gr.Textbox(lines=24, label="Raw transcript (User:/Assistant:)", interactive=False)
clear = gr.Button("Clear", variant="secondary")
def _chat(history, user_msg, t, p, k, mxt, sys_p):
# Build messages from history + new user message
messages = [{"role":"system","content":sys_p}]
for u,a in history or []:
messages.append({"role":"user","content":u})
messages.append({"role":"assistant","content":a})
messages.append({"role":"user","content":user_msg})
reply = chat_decode(
core, ar_h, messages,
max_new=int(mxt), T=float(t),
greedy=False, top_k=int(k), top_p=float(p),
use_fp8=False, fp8_fallback=True
)
history = (history or []) + [(user_msg, reply)]
transcript = render_raw(history, sys_p)
return history, "", transcript
# Wire up events: submit via button or enter
msg.submit(_chat, [chatbot, msg, temp, topp, topk, mxnt, sys_prompt], [chatbot, msg, raw], queue=False)
submit.click(_chat, [chatbot, msg, temp, topp, topk, mxnt, sys_prompt], [chatbot, msg, raw], queue=False)
def _clear():
return [], "", ""
clear.click(_clear, inputs=None, outputs=[chatbot, msg, raw], queue=False)
demo.launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", "7860")))
def run_cli(core, ar_h):
print("Type to chat. Ctrl+C to exit.")
history: List[Tuple[str,str]] = []
while True:
try:
user = input("\nYou: ").strip()
if not user: continue
messages = [{"role":"system","content":"You are a helpful, concise assistant."}]
for u,a in history:
messages.append({"role":"user","content":u})
messages.append({"role":"assistant","content":a})
messages.append({"role":"user","content":user})
t0 = time.time()
reply = chat_decode(core, ar_h, messages, max_new=200, T=0.9, top_k=50, top_p=0.9)
dt = time.time()-t0
print(f"Bot: {reply}\n[{len(tok.encode(reply))} tok in {dt:.2f}s]")
history.append((user, reply))
# Also show raw transcript line by line in CLI
print("\n--- RAW ---")
print(render_raw(history, "You are a helpful, concise assistant."))
except KeyboardInterrupt:
print("\nbye."); break
def main():
ap = argparse.ArgumentParser()
ap.add_argument("--cli", action="store_true", help="Force CLI REPL even if not a TTY")
ap.add_argument("--gradio", action="store_true", help="Force Gradio UI")
args = ap.parse_args()
print(f"[init] downloading checkpoint {CKPT_NAME} from {MODEL_REPO} β¦", flush=True)
core, ar_h, cfg = load_joint_from_hub(MODEL_REPO, CKPT_NAME)
core.eval(); ar_h.eval()
print(f"[ready] cfg={cfg} device={DEV.type} vocab={VOCAB}", flush=True)
# Spaces have no interactive stdin. Auto-launch Gradio if not a TTY.
in_tty = sys.stdin.isatty()
if args.gradio or (not args.cli and not in_tty):
launch_gradio(core, ar_h)
else:
run_cli(core, ar_h)
if __name__ == "__main__":
main()
|