Spaces:
Running
Running
File size: 16,773 Bytes
95f6852 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
#!/usr/bin/env python3
# app.py β Chat inference for AGILLM2 (loads checkpoint from HF Hub)
# - Downloads final.pt (or chosen file) from OpenTransformer/AGILLM2-fast-training
# - Rebuilds your 5L-style AR model from checkpoint cfg
# - Qwen chat template for multi-turn
# - Auto-Gradio on Hugging Face Spaces; optional CLI locally
from __future__ import annotations
import os, sys, time, math, pathlib, argparse
from typing import Optional, Tuple, List, Dict, Any
import torch
import torch.nn as nn
import torch.nn.functional as F
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, logging as hf_log
import warnings
# βββββββββββ Quiet logs
hf_log.set_verbosity_error()
warnings.filterwarnings("ignore", category=UserWarning)
# βββββββββββ Config (env-overridable)
MODEL_REPO = os.getenv("MODEL_REPO", "OpenTransformer/AGILLM2-fast-training")
CKPT_NAME = os.getenv("CKPT_NAME", "final.pt") # e.g. "step04121612.pt"
TOKENIZER_ID = os.getenv("TOKENIZER_ID", "Qwen/Qwen3-235B-A22B-Thinking-2507")
# Device + TF32 policy (new API; harmless on CPU)
DEV = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if DEV.type == "cuda":
try:
torch.backends.cuda.matmul.fp32_precision = "high" # alt: "ieee"
except Exception:
pass
# βββββββββββ Tokenizer
tok = AutoTokenizer.from_pretrained(TOKENIZER_ID, use_fast=True, trust_remote_code=True)
if tok.pad_token is None:
tok.add_special_tokens({"pad_token": "[PAD]"})
VOCAB = max(tok.get_vocab().values()) + 1
BLANK = tok.pad_token_id
EOS = tok.eos_token_id if tok.eos_token_id is not None else tok.sep_token_id
# βββββββββββ AMP helper
try:
from torch.amp import autocast as _ac, GradScaler # noqa
except Exception:
from torch.cuda.amp import autocast as _ac, GradScaler # noqa
def _supports_fp8() -> bool:
return hasattr(torch, "float8_e4m3fn")
def _auto_amp_dtype(prefer_fp8: bool = False):
if DEV.type != "cuda":
return torch.float32
if prefer_fp8 and _supports_fp8():
return torch.float8_e4m3fn
try:
if torch.cuda.is_bf16_supported():
return torch.bfloat16
return torch.float16
except Exception:
return torch.float16
def amp(enabled: bool, prefer_fp8: bool = False):
if not (enabled and DEV.type == "cuda"):
from contextlib import nullcontext
return nullcontext()
return _ac(device_type="cuda", dtype=_auto_amp_dtype(prefer_fp8=prefer_fp8))
# βββββββββββ ALiBi helpers
def _alibi_slopes(n_heads: int):
import math as _m
def pow2slopes(n):
start = 2 ** (-2 ** -(_m.log2(n) - 3))
ratio = start
return [start * (ratio ** i) for i in range(n)]
if _m.log2(n_heads).is_integer():
vals = pow2slopes(n_heads)
else:
closest = 2 ** _m.floor(_m.log2(n_heads))
vals = pow2slopes(closest)
extra = pow2slopes(2 * closest)
vals += extra[0::2][: n_heads - closest]
return torch.tensor(vals, device=DEV).view(1, n_heads, 1, 1)
def alibi_bias(n_heads: int, n_tokens: int):
i = torch.arange(n_tokens, device=DEV).view(1, 1, n_tokens, 1)
j = torch.arange(n_tokens, device=DEV).view(1, 1, 1, n_tokens)
dist = (j - i).clamp_min(0)
slopes = _alibi_slopes(n_heads)
return -slopes * dist
# βββββββββββ Model (5L core + AR head, matches your training)
class LowRankMHA(nn.Module):
def __init__(self, d: int, h: int, r: int, use_relpos: bool = True):
super().__init__()
assert d % h == 0, "d must be divisible by number of heads"
self.h, self.dk = h, d // h
self.use_relpos = use_relpos
self.q = nn.Linear(d, d, bias=False)
self.k = nn.Linear(d, d, bias=False)
self.v = nn.Linear(d, d, bias=False)
self.U = nn.Parameter(torch.randn(self.dk, r))
nn.init.orthogonal_(self.U)
self.proj = nn.Linear(h * r, d, bias=False)
self.drop = nn.Dropout(0.1)
def _proj(self, x):
B, N, _ = x.shape
return (x.view(B, N, self.h, self.dk).transpose(1, 2) @ self.U)
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None,
rel_bias_tokens: Optional[int] = None,
kv_cache: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache: bool = False):
q = self._proj(self.q(x))
k_new = self._proj(self.k(x))
v_new = self._proj(self.v(x))
if kv_cache is None:
k, v = k_new, v_new
else:
k, v = kv_cache
if use_cache:
k = torch.cat([k, k_new], dim=2)
v = torch.cat([v, v_new], dim=2)
att = (q @ k.transpose(-1, -2)) / math.sqrt(self.dk)
if q.size(2) == k.size(2):
if self.use_relpos and rel_bias_tokens is not None:
att = att + alibi_bias(self.h, rel_bias_tokens)
if mask is not None:
att = att + mask
z = (att.softmax(-1) @ v).transpose(1, 2)
z = z.reshape(x.size(0), x.size(1), -1)
out = self.drop(self.proj(z))
return (out, (k, v)) if use_cache else out
class Block(nn.Module):
def __init__(self, d: int, h: int, r: int):
super().__init__()
self.ln1, self.ln2 = nn.LayerNorm(d), nn.LayerNorm(d)
self.mha = LowRankMHA(d, h, r, use_relpos=True)
self.ff = nn.Sequential(nn.Linear(d, 4 * d), nn.ReLU(), nn.Linear(4 * d, d))
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor],
kv: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache: bool = False):
n = x.size(1)
if use_cache:
y, new_kv = self.mha(self.ln1(x), mask, rel_bias_tokens=n if mask is not None else None, kv_cache=kv, use_cache=True)
x = x + y
x = x + self.ff(self.ln2(x))
return x, new_kv
else:
x = x + self.mha(self.ln1(x), mask, rel_bias_tokens=n)
return x + self.ff(self.ln2(x))
class Encoder(nn.Module):
def __init__(self, cfg: Dict[str, int]):
super().__init__()
d, l, h, r = cfg["d"], cfg["layers"], cfg["heads"], cfg["rank"]
self.emb = nn.Embedding(VOCAB, d)
self.blocks = nn.ModuleList([Block(d, h, r) for _ in range(l)])
self.ln = nn.LayerNorm(d)
def forward(self, ids: torch.Tensor, mask: Optional[torch.Tensor],
kv_caches: Optional[List[Optional[Tuple[torch.Tensor, torch.Tensor]]]] = None,
use_cache: bool = False):
x = self.emb(ids)
if not use_cache:
for blk in self.blocks:
x = blk(x, mask)
return self.ln(x)
new_kvs: List[Tuple[torch.Tensor, torch.Tensor]] = []
for i, blk in enumerate(self.blocks):
kv = kv_caches[i] if (kv_caches is not None) else None
x, kv_out = blk(x, mask, kv, use_cache=True)
new_kvs.append(kv_out)
return self.ln(x), new_kvs
class ARHead(nn.Module):
def __init__(self, d):
super().__init__()
self.proj = nn.Linear(d, VOCAB)
def forward(self, h): return self.proj(h)
# βββββββββββ Misc
def causal_mask(n: int):
m = torch.full((1, 1, n, n), float("-inf"), device=DEV)
return torch.triu(m, 1)
def _resolve_cfg_from_ckpt(sd: dict) -> Dict[str, int]:
if isinstance(sd, dict) and "cfg" in sd and isinstance(sd["cfg"], dict):
return dict(sd["cfg"])
core = sd.get("core", {})
emb_w = core.get("emb.weight")
if emb_w is None:
raise RuntimeError("Checkpoint missing core.emb.weight; cannot infer d/l/h/r.")
d = emb_w.shape[1]
layer_ids = []
for k in core.keys():
if k.startswith("blocks."):
parts = k.split(".")
if len(parts) > 2 and parts[1].isdigit():
layer_ids.append(int(parts[1]))
layers = (max(layer_ids) + 1) if layer_ids else 0
U = core.get("blocks.0.mha.U")
if U is None:
raise RuntimeError("Checkpoint missing blocks.0.mha.U; cannot infer rank/heads.")
dk, r = U.shape
h = d // dk
return {"d": d, "layers": layers, "heads": h, "rank": r}
def load_joint_from_hub(repo_id: str, filename: str):
ckpt_path = hf_hub_download(repo_id=repo_id, filename=filename)
sd = torch.load(ckpt_path, map_location="cpu")
cfg = _resolve_cfg_from_ckpt(sd)
core = Encoder(cfg).to(DEV)
ar_h = ARHead(cfg["d"]).to(DEV)
core.load_state_dict(sd["core"])
if "ar" in sd: ar_h.load_state_dict(sd["ar"])
core.eval(); ar_h.eval()
return core, ar_h, cfg
# βββββββββββ Chat helpers
def render_chat(messages: List[Dict[str, str]], add_generation_prompt: bool = True) -> str:
# messages: [{"role":"system/user/assistant","content": "..."}]
return tok.apply_chat_template(messages, tokenize=False, add_generation_prompt=add_generation_prompt)
def _apply_no_repeat_ngram(logits: torch.Tensor, ids: torch.Tensor, n: int):
if n <= 0 or ids.size(1) < n - 1: return logits
prefix = ids[0, -(n - 1):].tolist()
banned, tokens = [], ids[0].tolist()
for i in range(len(tokens) - n + 1):
if tokens[i:i + n - 1] == prefix:
banned.append(tokens[i + n - 1])
if banned:
banned_idx = torch.tensor(banned, device=logits.device, dtype=torch.long)
logits[..., banned_idx] = float("-inf")
return logits
def _apply_rep_presence_frequency(logits, ids, last_n, repetition_penalty, presence_penalty, frequency_penalty):
if ids.numel() == 0: return logits
hist = ids[0, -last_n:].to(torch.long) if last_n > 0 else ids[0].to(torch.long)
if hist.numel() == 0: return logits
uniq, counts = torch.unique(hist, return_counts=True)
if presence_penalty != 0.0 or frequency_penalty != 0.0:
adjust = presence_penalty + frequency_penalty * counts.to(logits.dtype)
logits[..., uniq] = logits[..., uniq] - adjust
if repetition_penalty and abs(repetition_penalty - 1.0) > 1e-6:
sel = logits[..., uniq]
sel = torch.where(sel > 0, sel / repetition_penalty, sel * repetition_penalty)
logits[..., uniq] = sel
return logits
def _filter_top_k_top_p_min_p(logits: torch.Tensor, top_k: int, top_p: float, min_p: float, temperature: float):
logits = logits / max(temperature, 1e-8)
if logits.dim() == 1: logits = logits.unsqueeze(0)
probs = logits.softmax(-1)
V = probs.size(-1)
if top_k and top_k < V:
_, idx = torch.topk(probs, top_k, dim=-1)
mask = torch.full_like(probs, 0.0); mask.scatter_(1, idx, 1.0); probs = probs * mask
if top_p < 1.0:
sorted_probs, sorted_idx = torch.sort(probs, descending=True, dim=-1)
cumsum = torch.cumsum(sorted_probs, dim=-1)
keep = cumsum <= top_p; keep[..., 0] = True
mask = torch.zeros_like(probs); mask.scatter_(1, sorted_idx, keep.to(mask.dtype))
probs = probs * mask
if min_p > 0.0:
probs = torch.where(probs >= min_p, probs, torch.zeros_like(probs))
sums = probs.sum(-1, keepdim=True); empty = (sums == 0)
if empty.any():
fallback_idx = logits.argmax(-1, keepdim=True)
probs = torch.where(empty, torch.zeros_like(probs), probs)
probs.scatter_(-1, fallback_idx, torch.where(empty, torch.ones_like(sums), torch.zeros_like(sums)))
probs = probs / probs.sum(-1, keepdim=True)
return probs
@torch.no_grad()
def chat_decode(core, ar_h, messages: List[Dict[str, str]], max_new: int = 200, T: float = 0.9,
greedy: bool = False, top_k: int = 50, top_p: float = 0.9, min_p: float = 0.0,
repetition_penalty: float = 1.1, presence_penalty: float = 0.3, frequency_penalty: float = 0.2,
penalty_last_n: int = 128, no_repeat_ngram_size: int = 3,
use_fp8: bool = False, fp8_fallback: bool = True) -> str:
prompt = render_chat(messages, add_generation_prompt=True)
ids = torch.tensor([tok.encode(prompt)], device=DEV)
prompt_len = ids.size(1)
with amp(use_fp8 or False, prefer_fp8=(use_fp8 and (_supports_fp8() or fp8_fallback))):
h_full, kvs = core(ids, causal_mask(ids.size(1)), use_cache=True)
for _ in range(max_new):
logits = ar_h(h_full)[:, -1]
logits = _apply_no_repeat_ngram(logits, ids, no_repeat_ngram_size)
logits = _apply_rep_presence_frequency(logits, ids, penalty_last_n,
repetition_penalty, presence_penalty, frequency_penalty)
if greedy:
nxt = logits.argmax(-1, keepdim=True)
else:
probs = _filter_top_k_top_p_min_p(logits.squeeze(0), top_k, top_p, min_p, T)
nxt = probs.multinomial(1)
ids = torch.cat([ids, nxt.unsqueeze(0) if nxt.dim()==1 else nxt], 1)
x = ids[:, -1:]
h_full, kvs = core(x, None, kv_caches=kvs, use_cache=True)
full_ids = ids[0].tolist()
return tok.decode(full_ids[prompt_len:], skip_special_tokens=True).strip()
# βββββββββββ Entrypoint
def main():
ap = argparse.ArgumentParser()
ap.add_argument("--gradio", action="store_true", help="Launch a minimal Gradio chat UI")
ap.add_argument("--fp8-only", action="store_true")
ap.add_argument("--greedy", action="store_true")
ap.add_argument("--top_k", type=int, default=50)
ap.add_argument("--top_p", type=float, default=0.9)
ap.add_argument("--temperature", type=float, default=0.9)
ap.add_argument("--max_new", type=int, default=200)
args = ap.parse_args()
# Force Gradio on HF Spaces (stdin is unavailable there)
if os.getenv("SPACE_ID"):
args.gradio = True
print(f"[init] downloading checkpoint {CKPT_NAME} from {MODEL_REPO} β¦", flush=True)
core, ar_h, cfg = load_joint_from_hub(MODEL_REPO, CKPT_NAME)
print(f"[ready] cfg={cfg} device={DEV.type} vocab={VOCAB}")
if args.gradio:
import gradio as gr
with gr.Blocks() as demo:
gr.Markdown("### OpenTransformer / AGILLM2 β Chat")
chatbox = gr.Chatbot(height=520)
with gr.Row():
msg = gr.Textbox(placeholder="Type your messageβ¦", scale=8)
send = gr.Button("Send", variant="primary", scale=1)
clear = gr.Button("Clear", scale=1)
def _chat(history, user_msg):
if not user_msg:
return history, ""
messages = [{"role":"system","content":"You are a helpful, concise assistant."}]
for u,a in history or []:
messages.append({"role":"user","content":u})
messages.append({"role":"assistant","content":a})
messages.append({"role":"user","content":user_msg})
reply = chat_decode(core, ar_h, messages, max_new=args.max_new, T=args.temperature,
greedy=args.greedy, top_k=args.top_k, top_p=args.top_p,
use_fp8=args.fp8_only, fp8_fallback=True)
history = (history or []) + [(user_msg, reply)]
return history, ""
send.click(_chat, [chatbox, msg], [chatbox, msg], queue=False)
msg.submit(_chat, [chatbox, msg], [chatbox, msg], queue=False)
clear.click(lambda: None, None, chatbox, queue=False)
demo.launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", "7860")))
return
# Local-only CLI REPL
history: List[Tuple[str,str]] = []
print("Type to chat. Ctrl+C to exit.")
while True:
try:
user = input("\nYou: ").strip()
if not user:
continue
messages = [{"role":"system","content":"You are a helpful, concise assistant."}]
for u,a in history:
messages.append({"role":"user","content":u})
messages.append({"role":"assistant","content":a})
messages.append({"role":"user","content":user})
t0 = time.time()
reply = chat_decode(core, ar_h, messages, max_new=args.max_new, T=args.temperature,
greedy=args.greedy, top_k=args.top_k, top_p=args.top_p,
use_fp8=args.fp8_only, fp8_fallback=True)
dt = time.time() - t0
print(f"Bot: {reply}\n[{len(tok.encode(reply))} tok in {dt:.2f}s]")
history.append((user, reply))
except KeyboardInterrupt:
print("\nbye.")
break
if __name__ == "__main__":
main()
|