File size: 16,773 Bytes
95f6852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
#!/usr/bin/env python3
# app.py β€” Chat inference for AGILLM2 (loads checkpoint from HF Hub)
# - Downloads final.pt (or chosen file) from OpenTransformer/AGILLM2-fast-training
# - Rebuilds your 5L-style AR model from checkpoint cfg
# - Qwen chat template for multi-turn
# - Auto-Gradio on Hugging Face Spaces; optional CLI locally

from __future__ import annotations
import os, sys, time, math, pathlib, argparse
from typing import Optional, Tuple, List, Dict, Any

import torch
import torch.nn as nn
import torch.nn.functional as F

from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, logging as hf_log
import warnings

# ─────────── Quiet logs
hf_log.set_verbosity_error()
warnings.filterwarnings("ignore", category=UserWarning)

# ─────────── Config (env-overridable)
MODEL_REPO  = os.getenv("MODEL_REPO", "OpenTransformer/AGILLM2-fast-training")
CKPT_NAME   = os.getenv("CKPT_NAME",  "final.pt")  # e.g. "step04121612.pt"
TOKENIZER_ID = os.getenv("TOKENIZER_ID", "Qwen/Qwen3-235B-A22B-Thinking-2507")

# Device + TF32 policy (new API; harmless on CPU)
DEV = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if DEV.type == "cuda":
    try:
        torch.backends.cuda.matmul.fp32_precision = "high"  # alt: "ieee"
    except Exception:
        pass

# ─────────── Tokenizer
tok = AutoTokenizer.from_pretrained(TOKENIZER_ID, use_fast=True, trust_remote_code=True)
if tok.pad_token is None:
    tok.add_special_tokens({"pad_token": "[PAD]"})
VOCAB = max(tok.get_vocab().values()) + 1
BLANK = tok.pad_token_id
EOS = tok.eos_token_id if tok.eos_token_id is not None else tok.sep_token_id

# ─────────── AMP helper
try:
    from torch.amp import autocast as _ac, GradScaler  # noqa
except Exception:
    from torch.cuda.amp import autocast as _ac, GradScaler  # noqa

def _supports_fp8() -> bool:
    return hasattr(torch, "float8_e4m3fn")

def _auto_amp_dtype(prefer_fp8: bool = False):
    if DEV.type != "cuda":
        return torch.float32
    if prefer_fp8 and _supports_fp8():
        return torch.float8_e4m3fn
    try:
        if torch.cuda.is_bf16_supported():
            return torch.bfloat16
        return torch.float16
    except Exception:
        return torch.float16

def amp(enabled: bool, prefer_fp8: bool = False):
    if not (enabled and DEV.type == "cuda"):
        from contextlib import nullcontext
        return nullcontext()
    return _ac(device_type="cuda", dtype=_auto_amp_dtype(prefer_fp8=prefer_fp8))

# ─────────── ALiBi helpers
def _alibi_slopes(n_heads: int):
    import math as _m
    def pow2slopes(n):
        start = 2 ** (-2 ** -(_m.log2(n) - 3))
        ratio = start
        return [start * (ratio ** i) for i in range(n)]
    if _m.log2(n_heads).is_integer():
        vals = pow2slopes(n_heads)
    else:
        closest = 2 ** _m.floor(_m.log2(n_heads))
        vals = pow2slopes(closest)
        extra = pow2slopes(2 * closest)
        vals += extra[0::2][: n_heads - closest]
    return torch.tensor(vals, device=DEV).view(1, n_heads, 1, 1)

def alibi_bias(n_heads: int, n_tokens: int):
    i = torch.arange(n_tokens, device=DEV).view(1, 1, n_tokens, 1)
    j = torch.arange(n_tokens, device=DEV).view(1, 1, 1, n_tokens)
    dist = (j - i).clamp_min(0)
    slopes = _alibi_slopes(n_heads)
    return -slopes * dist

# ─────────── Model (5L core + AR head, matches your training)
class LowRankMHA(nn.Module):
    def __init__(self, d: int, h: int, r: int, use_relpos: bool = True):
        super().__init__()
        assert d % h == 0, "d must be divisible by number of heads"
        self.h, self.dk = h, d // h
        self.use_relpos = use_relpos
        self.q = nn.Linear(d, d, bias=False)
        self.k = nn.Linear(d, d, bias=False)
        self.v = nn.Linear(d, d, bias=False)
        self.U = nn.Parameter(torch.randn(self.dk, r))
        nn.init.orthogonal_(self.U)
        self.proj = nn.Linear(h * r, d, bias=False)
        self.drop = nn.Dropout(0.1)

    def _proj(self, x):
        B, N, _ = x.shape
        return (x.view(B, N, self.h, self.dk).transpose(1, 2) @ self.U)

    def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None,
                rel_bias_tokens: Optional[int] = None,
                kv_cache: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
                use_cache: bool = False):
        q = self._proj(self.q(x))
        k_new = self._proj(self.k(x))
        v_new = self._proj(self.v(x))
        if kv_cache is None:
            k, v = k_new, v_new
        else:
            k, v = kv_cache
            if use_cache:
                k = torch.cat([k, k_new], dim=2)
                v = torch.cat([v, v_new], dim=2)
        att = (q @ k.transpose(-1, -2)) / math.sqrt(self.dk)
        if q.size(2) == k.size(2):
            if self.use_relpos and rel_bias_tokens is not None:
                att = att + alibi_bias(self.h, rel_bias_tokens)
            if mask is not None:
                att = att + mask
        z = (att.softmax(-1) @ v).transpose(1, 2)
        z = z.reshape(x.size(0), x.size(1), -1)
        out = self.drop(self.proj(z))
        return (out, (k, v)) if use_cache else out

class Block(nn.Module):
    def __init__(self, d: int, h: int, r: int):
        super().__init__()
        self.ln1, self.ln2 = nn.LayerNorm(d), nn.LayerNorm(d)
        self.mha = LowRankMHA(d, h, r, use_relpos=True)
        self.ff = nn.Sequential(nn.Linear(d, 4 * d), nn.ReLU(), nn.Linear(4 * d, d))

    def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor],
                kv: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
                use_cache: bool = False):
        n = x.size(1)
        if use_cache:
            y, new_kv = self.mha(self.ln1(x), mask, rel_bias_tokens=n if mask is not None else None, kv_cache=kv, use_cache=True)
            x = x + y
            x = x + self.ff(self.ln2(x))
            return x, new_kv
        else:
            x = x + self.mha(self.ln1(x), mask, rel_bias_tokens=n)
            return x + self.ff(self.ln2(x))

class Encoder(nn.Module):
    def __init__(self, cfg: Dict[str, int]):
        super().__init__()
        d, l, h, r = cfg["d"], cfg["layers"], cfg["heads"], cfg["rank"]
        self.emb = nn.Embedding(VOCAB, d)
        self.blocks = nn.ModuleList([Block(d, h, r) for _ in range(l)])
        self.ln = nn.LayerNorm(d)

    def forward(self, ids: torch.Tensor, mask: Optional[torch.Tensor],
                kv_caches: Optional[List[Optional[Tuple[torch.Tensor, torch.Tensor]]]] = None,
                use_cache: bool = False):
        x = self.emb(ids)
        if not use_cache:
            for blk in self.blocks:
                x = blk(x, mask)
            return self.ln(x)
        new_kvs: List[Tuple[torch.Tensor, torch.Tensor]] = []
        for i, blk in enumerate(self.blocks):
            kv = kv_caches[i] if (kv_caches is not None) else None
            x, kv_out = blk(x, mask, kv, use_cache=True)
            new_kvs.append(kv_out)
        return self.ln(x), new_kvs

class ARHead(nn.Module):
    def __init__(self, d):
        super().__init__()
        self.proj = nn.Linear(d, VOCAB)
    def forward(self, h): return self.proj(h)

# ─────────── Misc
def causal_mask(n: int):
    m = torch.full((1, 1, n, n), float("-inf"), device=DEV)
    return torch.triu(m, 1)

def _resolve_cfg_from_ckpt(sd: dict) -> Dict[str, int]:
    if isinstance(sd, dict) and "cfg" in sd and isinstance(sd["cfg"], dict):
        return dict(sd["cfg"])
    core = sd.get("core", {})
    emb_w = core.get("emb.weight")
    if emb_w is None:
        raise RuntimeError("Checkpoint missing core.emb.weight; cannot infer d/l/h/r.")
    d = emb_w.shape[1]
    layer_ids = []
    for k in core.keys():
        if k.startswith("blocks."):
            parts = k.split(".")
            if len(parts) > 2 and parts[1].isdigit():
                layer_ids.append(int(parts[1]))
    layers = (max(layer_ids) + 1) if layer_ids else 0
    U = core.get("blocks.0.mha.U")
    if U is None:
        raise RuntimeError("Checkpoint missing blocks.0.mha.U; cannot infer rank/heads.")
    dk, r = U.shape
    h = d // dk
    return {"d": d, "layers": layers, "heads": h, "rank": r}

def load_joint_from_hub(repo_id: str, filename: str):
    ckpt_path = hf_hub_download(repo_id=repo_id, filename=filename)
    sd = torch.load(ckpt_path, map_location="cpu")
    cfg = _resolve_cfg_from_ckpt(sd)
    core = Encoder(cfg).to(DEV)
    ar_h = ARHead(cfg["d"]).to(DEV)
    core.load_state_dict(sd["core"])
    if "ar" in sd: ar_h.load_state_dict(sd["ar"])
    core.eval(); ar_h.eval()
    return core, ar_h, cfg

# ─────────── Chat helpers
def render_chat(messages: List[Dict[str, str]], add_generation_prompt: bool = True) -> str:
    # messages: [{"role":"system/user/assistant","content": "..."}]
    return tok.apply_chat_template(messages, tokenize=False, add_generation_prompt=add_generation_prompt)

def _apply_no_repeat_ngram(logits: torch.Tensor, ids: torch.Tensor, n: int):
    if n <= 0 or ids.size(1) < n - 1: return logits
    prefix = ids[0, -(n - 1):].tolist()
    banned, tokens = [], ids[0].tolist()
    for i in range(len(tokens) - n + 1):
        if tokens[i:i + n - 1] == prefix:
            banned.append(tokens[i + n - 1])
    if banned:
        banned_idx = torch.tensor(banned, device=logits.device, dtype=torch.long)
        logits[..., banned_idx] = float("-inf")
    return logits

def _apply_rep_presence_frequency(logits, ids, last_n, repetition_penalty, presence_penalty, frequency_penalty):
    if ids.numel() == 0: return logits
    hist = ids[0, -last_n:].to(torch.long) if last_n > 0 else ids[0].to(torch.long)
    if hist.numel() == 0: return logits
    uniq, counts = torch.unique(hist, return_counts=True)
    if presence_penalty != 0.0 or frequency_penalty != 0.0:
        adjust = presence_penalty + frequency_penalty * counts.to(logits.dtype)
        logits[..., uniq] = logits[..., uniq] - adjust
    if repetition_penalty and abs(repetition_penalty - 1.0) > 1e-6:
        sel = logits[..., uniq]
        sel = torch.where(sel > 0, sel / repetition_penalty, sel * repetition_penalty)
        logits[..., uniq] = sel
    return logits

def _filter_top_k_top_p_min_p(logits: torch.Tensor, top_k: int, top_p: float, min_p: float, temperature: float):
    logits = logits / max(temperature, 1e-8)
    if logits.dim() == 1: logits = logits.unsqueeze(0)
    probs = logits.softmax(-1)
    V = probs.size(-1)
    if top_k and top_k < V:
        _, idx = torch.topk(probs, top_k, dim=-1)
        mask = torch.full_like(probs, 0.0); mask.scatter_(1, idx, 1.0); probs = probs * mask
    if top_p < 1.0:
        sorted_probs, sorted_idx = torch.sort(probs, descending=True, dim=-1)
        cumsum = torch.cumsum(sorted_probs, dim=-1)
        keep = cumsum <= top_p; keep[..., 0] = True
        mask = torch.zeros_like(probs); mask.scatter_(1, sorted_idx, keep.to(mask.dtype))
        probs = probs * mask
    if min_p > 0.0:
        probs = torch.where(probs >= min_p, probs, torch.zeros_like(probs))
    sums = probs.sum(-1, keepdim=True); empty = (sums == 0)
    if empty.any():
        fallback_idx = logits.argmax(-1, keepdim=True)
        probs = torch.where(empty, torch.zeros_like(probs), probs)
        probs.scatter_(-1, fallback_idx, torch.where(empty, torch.ones_like(sums), torch.zeros_like(sums)))
    probs = probs / probs.sum(-1, keepdim=True)
    return probs

@torch.no_grad()
def chat_decode(core, ar_h, messages: List[Dict[str, str]], max_new: int = 200, T: float = 0.9,
                greedy: bool = False, top_k: int = 50, top_p: float = 0.9, min_p: float = 0.0,
                repetition_penalty: float = 1.1, presence_penalty: float = 0.3, frequency_penalty: float = 0.2,
                penalty_last_n: int = 128, no_repeat_ngram_size: int = 3,
                use_fp8: bool = False, fp8_fallback: bool = True) -> str:
    prompt = render_chat(messages, add_generation_prompt=True)
    ids = torch.tensor([tok.encode(prompt)], device=DEV)
    prompt_len = ids.size(1)

    with amp(use_fp8 or False, prefer_fp8=(use_fp8 and (_supports_fp8() or fp8_fallback))):
        h_full, kvs = core(ids, causal_mask(ids.size(1)), use_cache=True)
        for _ in range(max_new):
            logits = ar_h(h_full)[:, -1]
            logits = _apply_no_repeat_ngram(logits, ids, no_repeat_ngram_size)
            logits = _apply_rep_presence_frequency(logits, ids, penalty_last_n,
                                                   repetition_penalty, presence_penalty, frequency_penalty)
            if greedy:
                nxt = logits.argmax(-1, keepdim=True)
            else:
                probs = _filter_top_k_top_p_min_p(logits.squeeze(0), top_k, top_p, min_p, T)
                nxt = probs.multinomial(1)
            ids = torch.cat([ids, nxt.unsqueeze(0) if nxt.dim()==1 else nxt], 1)
            x = ids[:, -1:]
            h_full, kvs = core(x, None, kv_caches=kvs, use_cache=True)

    full_ids = ids[0].tolist()
    return tok.decode(full_ids[prompt_len:], skip_special_tokens=True).strip()

# ─────────── Entrypoint
def main():
    ap = argparse.ArgumentParser()
    ap.add_argument("--gradio", action="store_true", help="Launch a minimal Gradio chat UI")
    ap.add_argument("--fp8-only", action="store_true")
    ap.add_argument("--greedy", action="store_true")
    ap.add_argument("--top_k", type=int, default=50)
    ap.add_argument("--top_p", type=float, default=0.9)
    ap.add_argument("--temperature", type=float, default=0.9)
    ap.add_argument("--max_new", type=int, default=200)
    args = ap.parse_args()

    # Force Gradio on HF Spaces (stdin is unavailable there)
    if os.getenv("SPACE_ID"):
        args.gradio = True

    print(f"[init] downloading checkpoint {CKPT_NAME} from {MODEL_REPO} …", flush=True)
    core, ar_h, cfg = load_joint_from_hub(MODEL_REPO, CKPT_NAME)
    print(f"[ready] cfg={cfg} device={DEV.type} vocab={VOCAB}")

    if args.gradio:
        import gradio as gr
        with gr.Blocks() as demo:
            gr.Markdown("### OpenTransformer / AGILLM2 β€” Chat")
            chatbox = gr.Chatbot(height=520)
            with gr.Row():
                msg = gr.Textbox(placeholder="Type your message…", scale=8)
                send = gr.Button("Send", variant="primary", scale=1)
                clear = gr.Button("Clear", scale=1)

            def _chat(history, user_msg):
                if not user_msg:
                    return history, ""
                messages = [{"role":"system","content":"You are a helpful, concise assistant."}]
                for u,a in history or []:
                    messages.append({"role":"user","content":u})
                    messages.append({"role":"assistant","content":a})
                messages.append({"role":"user","content":user_msg})
                reply = chat_decode(core, ar_h, messages, max_new=args.max_new, T=args.temperature,
                                    greedy=args.greedy, top_k=args.top_k, top_p=args.top_p,
                                    use_fp8=args.fp8_only, fp8_fallback=True)
                history = (history or []) + [(user_msg, reply)]
                return history, ""

            send.click(_chat, [chatbox, msg], [chatbox, msg], queue=False)
            msg.submit(_chat, [chatbox, msg], [chatbox, msg], queue=False)
            clear.click(lambda: None, None, chatbox, queue=False)

        demo.launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", "7860")))
        return

    # Local-only CLI REPL
    history: List[Tuple[str,str]] = []
    print("Type to chat. Ctrl+C to exit.")
    while True:
        try:
            user = input("\nYou: ").strip()
            if not user:
                continue
            messages = [{"role":"system","content":"You are a helpful, concise assistant."}]
            for u,a in history:
                messages.append({"role":"user","content":u})
                messages.append({"role":"assistant","content":a})
            messages.append({"role":"user","content":user})
            t0 = time.time()
            reply = chat_decode(core, ar_h, messages, max_new=args.max_new, T=args.temperature,
                                greedy=args.greedy, top_k=args.top_k, top_p=args.top_p,
                                use_fp8=args.fp8_only, fp8_fallback=True)
            dt = time.time() - t0
            print(f"Bot: {reply}\n[{len(tok.encode(reply))} tok in {dt:.2f}s]")
            history.append((user, reply))
        except KeyboardInterrupt:
            print("\nbye.")
            break

if __name__ == "__main__":
    main()